

Proje Sales (360) kprice

Roof a

Project # 2200345

Sales: Ken Price (360) 384.9000-Ext:28 kprice@louwstruss.com

Roof area: 3775.08 sq ft

Date: 3/16/2022

Name: BARCELO HOMES/93RD AVE 7216 93RD AVE SE MERCER ISLAND WA 98040 Sub.: Lot: # 1

Job	Truss	Truss Type	Qty	Ply E	BARCELO HOMES/9	3RD AVE	
2200345	F01	FLOOR GIRDER	1	1	lob Reference (on	tional)	
Louws Truss, Inc., Ferndale	e, WA 98248	1	Run: 8.530 s Feb 23 20 ID:MIN sBZ2H5	022 Print: 8.53 5RHwvIn3cl	30 s Feb 23 2022 MiT _?L0zaOV4-ICdicv	Fek Industries, Inc. Wed Ma SYvepMdA85v1Q2k7a	ar 16 10:24:26 2022 Page 1 YBrbEs dSk7ca6rzaMSp
1-6-12 1	-6-12 1-5-14	<u> </u>	1-6-2 1-6-2	1-6-2	1-6-14	<u>1-6-14</u> <u>1-6-14</u>	<u>1-6-14</u>
1 1	11 1	I	1 11	I	11 1		Scale = 1:37 0
4x10	3x6 FP=	6x8 4	4x5		4x5	3x6 FP=	
1 2	3 4 5	6 7 8 _{T2}	9 10	11	12 13	1415 1	6 17 T1
	We	W4	W4 W4	104	WS	105 W5	W5 W1 0-
		ва		~		B1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	<u> </u>				<u>t</u> ↓		
27	26 25	24 23 7x8 = 6x12 =	22 5x6 =		21 5x8 = 3x	20 19 6 FP= 5x6	18
500	5X0 — 5X0 FP-					5x0 _	4x5
3-5-4	6-7-4	8-1-2 9-7-0 9-7 _I 12	15-11-4			22-3-0	<u>22-6</u> -8
	<u>3-2-0</u> 7:0-3-0,Edge], [9:0-3-0,Edge],	<u>1-5-14</u> <u>1-5-140-0-12</u> [13:0-3-0,Edge], [18:Edge,0-1-8],	<u>6-3-8</u> [19:0-3-0,Edge], [21:0	0-4-0,Edge], [22:0-3-0,Edge]	<u>6-3-12</u>], [26:0-3-0,Edge], [27:	0-3-8 :0-3-0,Edge]
LOADING (psf)	SPACING- 1-4-0) CSI.	DEFL. in	(loc) //	defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.0	TC 0.44	Vert(LL) -0.03	24-26 >9	999 480	MT20	220/195
BCLL 0.0	Rep Stress Incr NC	WB 0.43	Horz(CT) 0.04	18	n/a n/a		
BCDL 5.0	Code IRC2018/TPI201	4 Matrix-SH				Weight: 181 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF	No 2/flat)		BRACING-				
BOT CHORD 2x4 DF			TOP CHORD	Structural	wood sheathing	directly applied or 6-0-	0 oc purlins except
	No.2(flat)		TOP CHORD	Structural end vertic	wood sheathing als.	directly applied or 6-0-	0 oc purlins, except
WEBS 2X4 DF	No.2(flat) No.2(flat) No.2(flat)		TOP CHORD BOT CHORD	Structural end vertic Rigid ceilii	wood sheathing als. ng directly applie	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
REACTIONS. All be (lb) - Max Gr	No.2(flat) No.2(flat) earings 0-5-8 except (jt=length av All reactions 250 lb or les	ı) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5),	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=/	Structural end vertic Rigid ceilin 4291(LC 3)	wood sheathing als. ng directly applie),	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
REACTIONS. All be (lb) - Max Gr	No.2(flat) No.2(flat) earings 0-5-8 except (jt=length av All reactions 250 lb or les 21=3112(LC 4)	ı) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5),	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=4	Structural end vertic Rigid ceilin 4291(LC 3)	wood sheathing als. ng directly applie),	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
REACTIONS. All be (lb) - Max Gr	No.2(flat) No.2(flat) No.2(flat) av All reactions 250 lb or les 21=3112(LC 4) Comp./Max. Ten All forces :	a) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5), 250 (lb) or less except when shown	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=4	Structural end vertic Rigid ceilii 4291(LC 3)	wood sheathing als. ng directly applie),	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
WEBS 2x4 DF REACTIONS. All be (lb) - Max Gr FORCES. (lb) - Max. TOP CHORD 1-27= 6-7=-1	No.2(flat) No.2(flat) earings 0-5-8 except (jt=length av All reactions 250 lb or les 21=3112(LC 4) Comp./Max. Ten All forces : -318/0, 17-18=-305/0, 2-3=-22 /588/0, 7-8=0/1613, 8-9=0/16	a) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5), 250 (Ib) or less except when showr 226/0, 3-4=-2226/0, 4-5=-2226/0, 5 13, 11-12=0/852, 12-13=0/852, 13-	TOP CHORD BOT CHORD , 18=1307(LC 5), 23= n. -6=-1588/0, -14=-1030/0,	Structural end vertic Rigid ceilii 4291(LC 3)	wood sheathing als. ng directly applie),	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
WEBS 2x4 DF REACTIONS. All be (lb) - Max Gr FORCES. (lb) - Max. TOP CHORD 1-27= 6-7=-7 14-15 BOT CHORD	No.2(flat) No.2(flat) No.2(flat) av All reactions 250 lb or les 21=3112(LC 4) Comp./Max. Ten All forces : .318/0, 17-18=-305/0, 2-3=-2? 1588/0, 7-8=0/1613, 8-9=0/16 =-1030/0, 15-16=-1030/0 =0/1556, 25-26=0/2246, 24-2;	a) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5), 250 (lb) or less except when shown 226/0, 3-4=-2226/0, 4-5=-2226/0, 5 13, 11-12=0/852, 12-13=0/852, 13- 5=0/2246, 23-24=0/317, 22-23=-54	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=4 n. 5-6=-1588/0, -14=-1030/0, 49/0, 20-21=-25/468	Structural end vertic Rigid ceilii 4291(LC 3)	wood sheathing als. ng directly applie),	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
WEBS 2x4 DF REACTIONS. All be (lb) - Max Gr FORCES. (lb) - Max. TOP CHORD 1-27= 6-7=-' 14-15 BOT CHORD BOT CHORD 26-27: 19-20 WEBS 4-26=	No.2(flat) No.2(flat) No.2(flat) av All reactions 250 lb or les 21=3112(LC 4) Comp./Max. Ten All forces : -318/0, 17-18=-305/0, 2-3=-22 588/0, 7-8=0/1613, 8-9=0/16 5-1030/0, 15-16=-1030/0 =0/1556, 25-26=0/2246, 24-22 =-25/468, 18-19=0/922	a) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5), 250 (lb) or less except when shown 226/0, 3-4=-2226/0, 4-5=-2226/0, 5 13, 11-12=0/852, 12-13=0/852, 13- 5=0/2246, 23-24=0/317, 22-23=-54	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=4 n. 5-6=-1588/0, -14=-1030/0, 49/0, 20-21=-25/468, 5-24=-1004/0	Structural end vertic Rigid ceilii 4291(LC 3)	wood sheathing als. ng directly applie	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
WEBS 2x4 DF REACTIONS. All be (lb) - Max Gr FORCES. (lb) - Max. TOP CHORD 1-27= 6-7=-7 14-15 BOT CHORD BOT CHORD 26-27: 19-20 WEBS 4-26= 6-24=	No.2(flat) No.2(flat) No.2(flat) av All reactions 250 lb or les 21=3112(LC 4) Comp./Max. Ten All forces 2 -318/0, 17-18=-305/0, 2-3=-22 /588/0, 7-8=0/1613, 8-9=0/16 =-1030/0, 15-16=-1030/0 =0/1556, 25-26=0/2246, 24-22 =-25/468, 18-19=0/922 -678/0, 8-23=-815/0, 12-21=-1 -697/0, 7-24=0/1928, 7-23=-2	a) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5), 250 (lb) or less except when shown 226/0, 3-4=-2226/0, 4-5=-2226/0, 5 13, 11-12=0/852, 12-13=0/852, 13 5=0/2246, 23-24=0/317, 22-23=-54 297/0, 2-27=-2241/0, 2-26=0/985, 5 851/0, 9-23=-1722/0, 9-22=0/782,	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=4 n. 5-6=-1588/0, -14=-1030/0, 49/0, 20-21=-25/468, 5-24=-1001/0, 10-22=-720/0,	Structural end vertic Rigid ceilii 4291(LC 3)	wood sheathing als. ng directly applie	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except
WEBS 2x4 DF REACTIONS. All be (lb) - Max Gr FORCES. (lb) - Max. I TOP CHORD 1-27= 6-7=-' 14-15 BOT CHORD 26-27: 19-20 WEBS 4-26= 6-24= 11-21:	No.2(flat) No.2(flat) No.2(flat) No.2(flat) av All reactions 250 lb or les 21=3112(LC 4) Comp./Max. Ten All forces : 318/0, 17-18=-305/0, 2-3=-22 [588/0, 7-8=0/1613, 8=9=0/16 =-1030/0, 15-16=-1030/0 =0/1556, 25-26=0/2246, 24-22 [=-25/468, 18-19=0/922 -678/0, 8-23=-815/0, 12-21=-7 -697/0, 7-24=0/1928, 7-23=-2 =-1197/0, 13-21=-1880/0, 13-	a) 23=0-3-8, 21=0-3-8. s at joint(s) except 27=1945(LC 5), 250 (lb) or less except when showr 26/0, 3-4=-2226/0, 4-5=-2226/0, 5 13, 11-12=0/852, 12-13=0/852, 13- 5=0/2246, 23-24=0/317, 22-23=-54 297/0, 2-27=-2241/0, 2-26=0/985, 5 851/0, 9-23=-1722/0, 9-22=0/782, 19=0/843, 14-19=-717/0, 16-18=-1	TOP CHORD BOT CHORD , 18=1307(LC 5), 23=4 n. 5-6=-1588/0, -14=-1030/0, 49/0, 20-21=-25/468, 5-24=-1001/0, 10-22=-720/0, 350/0	Structural end vertic Rigid ceilii 4291(LC 3)	wood sheathing als. ng directly applied	directly applied or 6-0- d or 6-0-0 oc bracing.	0 oc purlins, except

Unbalanced floor live loads have been considered for this design.
 All plates are 3x6 MT20 unless otherwise indicated.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
 CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 18-27=-7, 1-17=-467

Plate Offsets (X,Y)	10-3-0 10-3-0 [1:Edge,0-0-12], [2:0-1-8,Edge], [6:0-	1-8,Edge], [11:0-1-8,Edge	1-4-0 12-5-0 1-1-0 1-1-0 ∋], [14:0-2-0,Edge], [17:	22-3-0 9-10-0 0-1-8,Edge], [18:0-2-8,Edge]		22-6-8 0-3-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.52 WB 0.24 Matrix-SH	DEFL. in Vert(LL) -0.16 Vert(CT) -0.22 Horz(CT) 0.05	(loc) l/defl L/d 15-16 >999 480 16 >999 360 13 n/a n/a	PLATES MT20 Weight: 115 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	DF No.2(flat) DF No.2(flat) DF No.2(flat) DF No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	lirectly applied or 6-0- l or 10-0-0 oc bracing.	0 oc purlins, except

REACTIONS. (lb/size) 13=817/Mechanical, 20=817/0-5-8 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1714/0, 3-4=-1714/0, 4-5=-2420/0, 5-6=-2420/0, 6-7=-2420/0, 7-8=-2420/0, 8-9=-1714/0, 9-10=-1714/0, 10-11 = -1714/0

BOT CHORD 19-20=0/983, 18-19=0/983, 17-18=0/2182, 16-17=0/2420, 15-16=0/2420, 14-15=0/2182, 13-14=0/983

WEBS 11-13=-1229/0, 2-20=-1229/0, 11-14=0/914, 2-18=0/914, 8-14=-584/0, 4-18=-585/0, 8-15=0/298, 4-17=-7/405

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

	10-3-0 11-4-0			1-4-0 12-5-0	12-5-0 22-3-0				
		10-3-0	· 1	1-1-0 ' 1-1-0 '	9-10-0)	0-3-8		
Plate C	Plate Offsets (X,Y) [1:Edge,0-0-12], [2:0-1-8,Edge], [6:0-1-8,Edge], [11:0-1-8,Edge], [14:0-2-0,Edge], [17:0-1-8,Edge], [18:0-2-8,Edge]								
LOADI TCLL TCDL BCLL BCDL	NG (psf) 40.0 10.0 0.0 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.52 WB 0.24 Matrix-SH	DEFL. in Vert(LL) -0.16 Vert(CT) -0.22 Horz(CT) 0.05	(loc) l/defl L/d 15-16 >999 480 16 >999 360 13 n/a n/a	PLATES MT20 Weight: 115 lb	GRIP 220/195 FT = 20%F, 11%E		
LUMBE TOP CI BOT CI WEBS	ER- HORD 2x4 DF HORD 2x4 DF 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 d or 10-0-0 oc bracing.) oc purlins, except		

REACTIONS. (lb/size) 13=817/Mechanical, 20=817/0-8-0 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1714/0, 3-4=-1714/0, 4-5=-2420/0, 5-6=-2420/0, 6-7=-2420/0, 7-8=-2420/0, 8-9=-1714/0, 9-10=-1714/0, 10-11 = -1714/0

BOT CHORD 19-20=0/983, 18-19=0/983, 17-18=0/2182, 16-17=0/2420, 15-16=0/2420, 14-15=0/2182, 13-14=0/983

WEBS 11-13=-1229/0, 2-20=-1229/0, 11-14=0/914, 2-18=0/914, 8-14=-584/0, 4-18=-585/0, 8-15=0/298, 4-17=-7/405

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WEBS 11-13=-1476/0, 2-20=-1645/0, 11-14=0/1160, 2-18=0/1332, 8-14=-831/0, 4-18=-982/0, 8-15=0/538, 4-17=-21/391, 6-15=-475/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 13-20=-7, 1-23=-67, 6-23=-167, 6-12=-67

TOP CHORD 2x4 DF No.2(flat)

BOT CHORD 2x4 DF No.2(flat) WEBS 2x4 DF No.2(flat) BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 13=966/0-5-8 (min. 0-1-8), 20=1067/0-8-0 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2382/0, 3-23=-2382/0, 4-23=-2382/0, 4-5=-3394/0, 5-6=-3394/0, 6-7=-3204/0, 7-8=-3204/0, 8-9=-2109/0, 9-10=-2109/0, 10-11=-2109/0

BOT CHORD 19-20=0/1316, 18-19=0/1316, 17-18=0/3168, 16-17=0/3394, 15-16=0/3394, 14-15=0/2774, 13-14=0/1181

WEBS 11-13=-1476/0, 2-20=-1645/0, 11-14=0/1160, 2-18=0/1332, 8-14=-831/0, 4-18=-982/0, 8-15=0/538, 4-17=-21/391, 6-15=-475/0

NOTES-

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 13-20=-7, 1-23=-67, 6-23=-167, 6-12=-67

¹⁾ Unbalanced floor live loads have been considered for this design.

1	10-3-0			<u>1-1-8,12-0-0, 22-1-0</u>			22-4-8
		10-3-0	-0-	10-8'0-10-8'	10-1-0	-	0-3-8
Plate Offsets (X,Y) [1:Edge,0-0-12], [2:0-1-8,Edge], [10:0-1-12,Edge], [12:0-1-8,Edge], [14:0-1-8,Edge], [15:0-1-8,Edge], [16:0-2-8,Edge]							
LOADII TCLL TCDL BCLL BCDL	VG (psf) 40.0 10.0 0.0 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.50 BC 0.61 WB 0.24 Matrix-SH	DEFL. in Vert(LL) -0.21 Vert(CT) -0.28 Horz(CT) 0.05	(loc) I/defl L/d 13-14 >999 480 13-14 >940 360 12 n/a n/a	PLATES MT20 Weight: 113 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBE TOP CH BOT CH WEBS	R- HORD 2x4 DF HORD 2x4 DF 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0- or 10-0-0 oc bracing.	0 oc purlins, except

REACTIONS. (lb/size) 12=798/0-3-8 (min. 0-1-8), 18=807/0-8-0 (min. 0-1-8)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1686/0, 3-4=-1686/0, 4-5=-2363/0, 5-6=-2363/0, 6-7=-2363/0, 7-8=-1715/0, 8-9=-1715/0, 9-10=-1715/0

 BOT CHORD
 17-18=0/969, 16-17=0/969, 15-16=0/2139, 14-15=0/2363, 13-14=0/2156, 12-13=0/1010

 CHORD
 16-17=0/969, 15-16=0/2139, 14-15=0/2363, 13-14=0/2156, 12-13=0/1010

10-12=-1236/0, 2-18=-1211/0, 10-13=0/882, 2-16=0/896, 7-13=-551/0, 4-16=-567/0, 7-14=-24/451, 4-15=-10/465 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	F02	Floor Supported Gable	1	1	Job Reference (optional)
Louws Truss, Inc., Ferndale, W	Run: 8.530 s ID:MIN	Feb 23 20 sBZ2H5	22 Print: 8. RHwyIn3	530 s Feb 23 2022 MiTek Industries, Inc. Wed Mar 16 10:24:33 2022 Page 1 cL?L0zaOV4-2YYM4IXxFniMzFBRs?2hXcNrZf2S?FqTLipSsxzaMSi	

```
<u>0-8-8</u>
```

. . .

0-<u>1</u>-8

~~ ~ ~

Scale = 1:40.6

0-8-8			25-8-8		26-0-0	
0-8-8			25-0-0		0-3-8	
Plate Offsets (X,Y)	[2:0-3-0,Edge], [46:Edge,0-0-12]					
						Ξ
LOADING (psf)	SPACING- 1-4-0	CSL	DEFL. in	(loc) l/defl l/d	PLATES GRIP	
TCLI 40.0	Plate Grip DOI 1 00	TC 0.04	Vert(LL) -0.00	1 n/r 180	MT20 220/195	
TCDI 10.0	Lumber DOL 1.00	BC 0.00	Vert(CT) 0.00	1 n/r 120	11120 220,100	
TODE 10.0				05 m/a m/a		
BCLL U.U	Rep Stress Incr YES	VVB 0.01	Horz(CT) -0.00	25 n/a n/a		
BCDL 5.0	Code IRC2018/TPI2014	Matrix-R			Weight: 123 lb $FI = 20\%F$, 11%E	
						-
LUMBER-			BRACING-			
TOP CHORD 2x4 DF	No.2(flat)		TOP CHORD	Structural wood sheathing d	lirectly applied or 6-0-0 oc purlins, except	
BOT CHORD 2x4 DF	No.2(flat)			end verticals.		
WEBS 2x4 DF	No.2(flat)		BOT CHORD	Rigid ceiling directly applied	or 6-0-0 oc bracing.	
OTHERS 2x4 DE	No 2(flat)					
	10.2(100)					

~ ~ ~ ~

REACTIONS. All bearings 26-0-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 25

Max Grav All reactions 250 lb or less at joint(s) 46, 25, 45, 44, 43, 42, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x4 MT20 unless otherwise indicated.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

9) CAUTION, Do not erect truss backwards.

0-8-8 0-8-8 Plate Offsets (X,Y)	[1:0-3-0,Edge], [11:0-1-8,Edge], [13:0	-1-8,Edge], [14:0-1-8,Edg	<u>18-2-0</u> 17-5-8 ge], [15:0-2-8,Edge], [16	6:Edge,0-0-12]	<u>18-5</u> r8 0-3-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.37 WB 0.21 Matrix-SH	DEFL. in Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.00	(loc) I/defl L/d 12-13 >999 480 12-13 >999 360 11 n/a n/a	PLATES MT20 GRIP 220/195 Weight: 98 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=642/0-8-0 (min. 0-1-8), 11=633/0-3-8 (min. 0-1-8)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-773/0, 2-3=-770/0, 3-4=-770/0, 4-5=-1490/0, 5-6=-1490/0, 6-7=-1490/0, 7-8=-1265/0, 8-9=-1265/0

 BOT CHORD
 14-15=0/1244, 13-14=0/1490, 12-13=0/1484, 11-12=0/778

9-11=-951/0, 1-15=0/943, 9-12=0/608, 4-15=-593/0, 7-12=-274/0, 4-14=0/357 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

7) CAUTION, Do not erect truss backwards.

0-8-8	8-4-12		9-3-0 10-1-4	17-6-	-0	17-9 _r 8
0-8-8	7-8-4		0-10-4 0-10-4	7-4-1	2	0-3-8
Plate Offsets (X,Y) [1:0-3-0,Edge], [6:0-1-8,Edge], [13:0-1	1-8,Edge], [14:0-2-8,Edge]	, [15:Edge,0-0-12]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.35 BC 0.46 WB 0.20 Matrix-SH	DEFL. in Vert(LL) -0.11 Vert(CT) -0.15 Horz(CT) 0.01	(loc) I/defi L/d 13-14 >999 480 13-14 >999 360 10 n/a n/a	PLATES MT20 Weight: 88 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0 or 10-0-0 oc bracing	0-0 oc purlins, except g.

REACTIONS. (lb/size) 1=622/0-8-0 (min. 0-1-8), 10=622/Mechanical

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-746/0, 2-3=-744/0, 3-4=-744/0, 4-5=-1404/0, 5-6=-1404/0, 6-7=-1194/0, 7-8=-1194/0

 BOT CHORD
 13-14=0/1191, 12-13=0/1404, 11-12=0/1404, 10-11=0/722

8-10=-902/0, 1-14=0/911, 8-11=0/590, 4-14=-559/0, 6-11=-384/0, 4-13=0/373 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

0-8-8			17-9-8		18-1 ₁ 0			
0-8-8			17-1-0		0-3-8			
Plate Offsets (X,Y) [1:0-3-0,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [15:0-2-8,Edge], [16:Edge,0-0-12]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.35 WB 0.20 Matrix-SH	DEFL. ir Vert(LL) -0.06 Vert(CT) -0.09 Horz(CT) 0.00	i (loc) l/defl L/d i 13 >999 480 14-15 >999 360 i 11 n/a n/a	PLATES GRIP MT20 220/195 Weight: 94 lb FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 DI BOT CHORD 2x4 DI WEBS 2x4 DI	- No.2(flat) - No.2(flat) - No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except			

. . . .

.....

REACTIONS. (lb/size) 1=628/0-8-0 (min. 0-1-8), 11=628/0-3-8 (min. 0-1-8)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-754/0, 2-3=-751/0, 3-4=-751/0, 4-5=-1432/0, 5-6=-1432/0, 6-7=-1432/0, 7-8=-1210/0, 8-9=-1210/0

 BOT CHORD
 14-15=0/1208, 13-14=0/1432, 12-13=0/1423, 11-12=0/730

9-11=-913/0, 1-15=0/920, 9-12=0/600, 4-15=-570/0, 7-12=-266/0, 4-14=0/333 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

. . .

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-433/0, 2-3=-1031/0, 3-4=-1035/0, 4-5=-1035/0, 5-6=-1436/0, 6-7=-1436/0, 7-8=-1207/0, 8-9=-1207/0

BOT CHORD 15-16=0/433, 14-15=0/1359, 13-14=0/1436, 12-13=0/1436, 11-12=0/729

WEBS 2-16=-562/0, 1-16=0/716, 9-11=-912/0, 2-15=0/738, 9-12=0/597, 5-15=-404/0, 7-12=-357/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1, 11.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.

- 2) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1, 11.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

			17-2-2 17-2-2			<u>17-5-</u> 10 0-3-8
Plate Offsets (X,Y) [[1:Edge,0-0-12], [4:0-1-8,Edge], [12:0	-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.36 WB 0.18 Matrix-SH	DEFL. in (loc Vert(LL) -0.06 12 Vert(CT) -0.09 11-12 Horz(CT) 0.03 10) I/defl L/d 2 >999 480 2 >999 360 0 n/a n/a	PLATES MT20 Weight: 90 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF	No.2(flat) No.2(flat)		BRACING- TOP CHORD Struct end v	ctural wood sheathing d verticals.	irectly applied or 6-0)-0 oc purlins, except

WEBS 2x4 DF No.2(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 10=636/0-2-10 (min. 0-1-8), 15=636/Mechanical

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1231/0, 3-4=-1231/0, 4-5=-1464/0, 5-6=-1464/0, 6-7=-1232/0, 7-8=-1232/0

 BOT CHORD
 14-15=0/741, 13-14=0/1464, 12-13=0/1464, 11-12=0/1456, 10-11=0/741

8-10=-927/0, 2-15=-926/0, 8-11=0/613, 2-14=0/612, 6-11=-280/0, 4-14=-339/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 10.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

 	<u>5-1-8</u> 5-1-8	<u>6-2-5</u> 1-0-13	7-3-2	<u> </u>	- <u>2</u> -0	<u>12-7-1</u> 0 0-3-8
Plate Offsets (X,Y)	[1:Edge,0-0-12], [4:0-1-8,Edge], [8:0-	1-8,Edge], [11:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.20 BC 0.23 WB 0.12 Matrix-SH	DEFL. in Vert(LL) -0.02 Vert(CT) -0.05 Horz(CT) 0.01	(loc) l/defl L/d 9-10 >999 480 8-9 >999 360 8 n/a n/a	PLATES MT20 Weight: 70 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 D BOT CHORD 2x4 D WEBS 2x4 D	F No.2(flat) F No.2(flat) F No.2(flat)		BRACING- TOP CHORD	Structural wood sheathing di end verticals. Bigid ceiling directly applied	rectly applied or 6-0)-0 oc purlins, except

REACTIONS. (lb/size) 8=446/0-3-8 (min. 0-1-8), 12=454/0-2-10 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-742/0, 3-4=-742/0, 4-5=-749/0, 5-6=-749/0

TOP CHORD BOT CHORD

11-12=0/501, 10-11=0/742, 9-10=0/742, 8-9=0/517

WEBS 6-8=-630/0, 2-12=-626/0, 6-9=0/290, 2-11=0/301

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 12.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

	11-10-8							
	10-4-8	11-1-8	0-9-0	21-11-4	22	2 <u>-0-0 23-8-8 24-0</u> -0 0-12 1-8-8 0-3-8		
Plate Offsets (X,Y)	Plate Offsets (X,Y) [1:Edge,0-0-12], [2:0-1-12,Edge], [9:0-1-8,Edge], [11:0-1-8,Edge], [14:0-1-8,Edge], [15:0-2-0,Edge], [16:0-1-8,Edge], [17:0-1-8,Edge], [20:0-1-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.45 BC 0.57 WB 0.24 Matrix-SH	DEFL. Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	in (loc) l/defl L/ 19 17-18 >999 48 25 17-18 >999 36 05 14 n/a n/	/d PLATES 80 MT20 80 /a Weight: 123 II	GRIP 220/195 b FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood she end verticals. Rigid ceiling directly 6-0-0 oc bracino: 13	eathing directly applied or 6-0 / applied or 10-0-0 oc bracing 3-14.)-0 oc purlins, except g, Except:			

REACTIONS. (lb/size) 14=941/0-8-0 (min. 0-1-8), 20=783/0-3-8 (min. 0-1-8) Max Grav14=941(LC 1), 20=787(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1684/0, 3-4=-1684/0, 4-5=-2301/0, 5-6=-2301/0, 6-7=-2301/0, 7-8=-1642/0, 8-9=-1642/0 19-20=0/994, 18-19=0/994, 17-18=0/2111, 16-17=0/2301, 15-16=0/2086, 14-15=0/934 TOP CHORD

BOT CHORD

WEBS 2-20=-1216/0, 9-14=-1171/0, 2-18=0/863, 9-15=0/893, 4-18=-533/0, 7-15=-562/0, 4-17=-47/423, 7-16=-16/455

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
6) CAUTION, Do not erect truss backwards.

Plate Offsets (X,Y)	<u>10-1-8</u> 10-1-8 [1:Edge,0-0-12], [2:0-1-12,Edge], [9:0	11-8 <u>10-11-2</u> 0-9-100-9- -1-8,Edge], [11:0-1-8,Edge]	³⁻¹² -10], [14:0-1-8,Edge], [15	<u>21-9-8</u> 10-0-12 :0-2-0,Edge], [16:0-1-8,Edge]	23-6-12 21- <u>10-4</u> 23-10-4 0-0-112 1-8-8 0-3-8 , [17:0-1-8,Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.58 BC 0.65 WB 0.23 Matrix-SH	DEFL. in Vert(LL) -0.20 Vert(CT) -0.26 Horz(CT) 0.05	(loc) l/defl L/d 17-18 >999 480 17-18 >993 360 14 n/a n/a	PLATES MT20 GRIP 220/195 Weight: 119 lb FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 13-14.	rectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing, Except:		

REACTIONS. (lb/size) 14=1331/0-8-0 (min. 0-1-8), 20=775/0-3-12 (min. 0-1-8) Max Grav14=1331(LC 1), 20=778(LC 3)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1611/0, 3-4=-1611/0, 4-5=-2202/0, 5-6=-2202/0, 6-7=-2202/0, 7-8=-1497/0, 8-9=-1497/0

 BOT CHORD
 19-20=0/932, 18-19=0/932, 17-18=0/2027, 16-17=0/2202, 15-16=0/1960, 14-15=0/761

11-14=-604/0, 2-20=-1165/0, 9-14=-1161/0, 2-18=0/849, 9-15=0/927, 4-18=-520/0, 7-15=-585/0, 4-17=-71/402,

7-16=0/494, 11-13=0/305

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 13-20=-7, 1-11=-67, 11-12=-267

BRACING-

-	-	~	

LUMBER-

TOP CHORD 2x4 DF No.2(flat) BOT CHORD 2x4 DF No.2(flat) 2x4 DF No.2(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 12=789/0-8-0 (min. 0-1-8), 18=789/0-2-10 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1638/0, 3-4=-1638/0, 4-5=-2264/0, 5-6=-2264/0, 6-7=-2264/0, 7-8=-1638/0, 8-9=-1638/0, 9-10=-1638/0 TOP CHORD

BOT CHORD 17-18=0/945, 16-17=0/945, 15-16=0/2068, 14-15=0/2264, 13-14=0/2068, 12-13=0/945

10-12=-1181/0, 2-18=-1181/0, 10-13=0/866, 2-16=0/866, 7-13=-538/0, 4-16=-538/0, 7-14=-30/421, 4-15=-30/421 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Attach ribbon block to truss with 3-10d nails applied to flat face.

4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 18.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

JOD	Truss	Truss Type	Qty P	'iy	BARCELO HOMES/93RD AVE		
2200345	F04D	Floor Supported Gable	1	1	Job Reference (optional)		
Louws Truss, Inc., Ferndale, W	À 98248	Run: 8.530 s ID:MIN	Feb 23 2022 sBZ2H5R	Print: 8.5 HwyIn3cl	30 s Feb 23 2022 MiTek Industr L?L0zaOV4-DfjWO2grfA4pr	ies, Inc. Wed Mar 16 nxWY?pIHTwKjn5c	10:24:44 2022 Page 1 0?4DZ5twzXlozaMSX
							0-1-8
							Scale = 1:30.7
1 2	3 4 5	6 7 8 9	1	10	11 12	13 14	15 16
GW1 ST1	STI1 STI1 ST	1 STI STI STI S	1 S	атт1	STT1 STT1	ST1 ST1	ST1 BL1
5-0							5,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
		<u>B1</u>		<u>p</u>			[] 33
32 31	30 29 28	27 26 25 24	2	23	22 21	20 19	18 17

			19-4-0		0-3-8
Plate Offsets (X,Y) [[1:Edge,0-0-12]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.04 BC 0.01 WB 0.01 Matrix-R	DEFL . ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999) 17 n/a n/a	PLATES MT20 GRIP 220/195 Weight: 93 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

19-4-0

2x4 DF No.2(flat) WEBS OTHERS 2x4 DF No.2(flat) <u>19-7-</u>8

REACTIONS. All bearings 19-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x4 MT20 unless otherwise indicated.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
8) CAUTION, Do not erect truss backwards.

Q	-3-0		9-0-12		9-4-4
0	-3-0		8-9-12		0-3-8
Plate Offsets (X,Y)	[9:0-1-8,Edge], [10:0-1-8,Edge], [11:0-	-1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.14 WB 0.08 Matrix-SH	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.00	(loc) l/defl L/d 8-9 >999 480 8-9 >999 360 8 n/a n/a	PLATES GRIP MT20 220/195 Weight: 55 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	- - No.2(flat) - No.2(flat) - No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied o	rectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=325/0-2-12 (min. 0-1-8), 8=325/0-8-0 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-408/0, 3-4=-397/0, 4-5=-397/0, 5-6=-397/0

TOP CHORD BOT CHORD

9-10=0/397, 8-9=0/327

2-11=-280/0, 1-11=0/367, 6-8=-409/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

7) CAUTION, Do not erect truss backwards.

0-3-0 0-3-0 Plate Offsets (X,Y) [7:0-1-8,Edge], [10:0-1-8,Edge], [11:0-	<u>9-3-8</u> 9-0-8 1-8,Edge], [12:0-1-8,Edg	e], [13:0-1-8,Edge]		<u>9-4-4</u> 11- 0-0-12 1-	<u>0-12 11-4-4</u> 8-8 0-3-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.52 BC 0.12 WB 0.09 Matrix-SH	DEFL. in (loc) I/d Vert(LL) 0.01 10-11 >9 Vert(CT) -0.02 10-11 >9 Horz(CT) -0.00 10 r	defl L/d 999 480 999 360 n/a n/a	PLATES MT20 Weight: 67 lb	GRIP 220/195 • FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS (lb/size	No.2(flat) No.2(flat) No.2(flat)) 1=276/0-2-12 (min_0-1-8) 10=89	5/0-8-0 (min 0-1-8)	BRACING- TOP CHORD Structural v end vertica BOT CHORD Rigid ceilin	wood sheathing di als. ng directly applied o	rectly applied or 6- or 6-0-0 oc bracing	0-0 oc purlins, except

Max Grav1=286(LC 3), 10=895(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-326/0, 3-4=-313/2, 4-5=-313/2, 5-6=-313/2

 BOT CHORD
 11-12=-2/313

WEBS 1-13=0/325, 7-10=-605/0, 6-10=-436/0, 7-9=0/310

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
6) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 9-14=-7, 1-7=-67, 7-8=-267

REACTIONS. (lb/size) 7=124/Mechanical, 4=124/0-8-0 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Refer to girder(s) for truss to truss connections.

2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be

attached to walls at their outer ends or restrained by other means.

4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

5) CAUTION, Do not erect truss backwards.

F	2-8-4	3-6-10	4-5-0			9-4-8		9-8-0
I	2-8-4	' 0-10-6	' 0-10-6	1		4-11-8		0-3-8
Plate Offsets (X	,Y) [1:Edge,0-0-12], [2:0-1-8,Edge], [7:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC BC WB Matr	0.40 0.39 0.10 ix-SH	DEFL. in Vert(LL) -0.10 Vert(CT) -0.15 Horz(CT) 0.01	(loc) l/d 6-7 >9 6-7 >7 6 r	lefl L/d 99 480 39 360 n/a n/a	PLATES MT20 Weight: 49 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBER- TOP CHORD 22 BOT CHORD 22 WEBS 22	x4 DF No.2(flat) x4 DF No.2(flat) x4 DF No.2(flat) x4 DF No.2(flat)			BRACING- TOP CHORD BOT CHORD	Structural vend vertica Rigid ceilin	wood sheathing d als. g directly applied	irectly applied or 6-(or 10-0-0 oc bracin)-0 oc purlins, except g.

REACTIONS. (lb/size) 6=345/0-8-0 (min. 0-1-8), 9=345/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD BOT CHORD 2-3=-409/0, 3-4=-409/0

8-9=0/409, 7-8=0/409, 6-7=0/354

WEBS 4-6=-443/0, 2-9=-507/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

	7-8-4	8	3-6-4 9-4-4	16-10-8	<u>17-2</u> 0
Plate Offsets (X,Y) [1:Edge,0-0-12], [4:0-1-8,Edge], [5:0-1	-8,Edge]	-10-0 0-10-0	7-0-4	0-3-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.33 BC 0.61 WB 0.23 Matrix-SH	DEFL. in Vert(LL) -0.15 Vert(CT) -0.21 Horz(CT) 0.04	(loc) l/defl L/d 11-12 >999 480 11-12 >966 360 9 n/a n/a	PLATES GRIP MT20 220/195 Weight: 77 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 9=618/0-5-8 (min. 0-1-8), 14=623/Mechanical

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1987/0, 3-4=-1987/0, 4-5=-2336/0, 5-6=-2002/0, 6-7=-2002/0

 BOT CHORD
 13-14=0/1201, 12-13=0/2336, 11-12=0/2336, 10-11=0/2336, 9-10=0/1224

 VED PORCES
 10-11=0/2336, 9-10=0/1224

7-9=-1333/0, 2-14=-1317/0, 7-10=0/853, 2-13=0/863, 5-10=-540/0, 4-13=-551/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

	1	7-8-4	1	8-4-4 9-0-4	16-5-0	16-8 ₁ 8
		7-8-4	1	0-8-0 ' 0-8-0 '	7-4-12	0-3-8
Plate O	ffsets (X,Y) [1:Edge,0-0-12], [2:0-1-12,Edge], [4:0-	-1-8,Edge], [5:0-1-8,Edge	e], [7:0-1-12,Edge]		
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.31 BC 0.55 WB 0.22 Matrix-SH	DEFL. in Vert(LL) -0.14 Vert(CT) -0.19 Horz(CT) 0.04	(loc) I/defl L/d 11-12 >999 480 11-12 >999 360 9 n/a n/a	PLATES GRIP MT20 220/195 Weight: 75 lb FT = 20%F, 11%E
LUMBE TOP CH BOT CH WEBS	R- IORD 2x4 DF IORD 2x4 DF 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 9=608/Mechanical, 14=608/Mechanical

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1924/0, 3-4=-1924/0, 4-5=-2235/0, 5-6=-1924/0, 6-7=-1924/0

 BOT CHORD
 13-14=0/1168, 12-13=0/2235, 11-12=0/2235, 10-11=0/2235, 9-10=0/1168

 VED PORT
 13-14=0/1168, 12-13=0/2235, 11-12=0/2235, 10-11=0/2125, 9-10=0/1168

7-9=-1281/0, 2-14=-1281/0, 7-10=0/829, 2-13=0/829, 5-10=-498/0, 4-13=-498/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/9	3RD AVE	
2200345	FT03	Floor Girder	1	2	lob Roference (on	tional	
Louws Truss, Inc., Fernda	ile, WA 98248		Run: 8.530 s Feb 23 20	22 Print: 8		ek Industries, Inc. We	ed Mar 16 10:24:50 2022 Page 1
	3-8-12			ISKHWYII	13CL ? LUZAO V4-2P41	IIOICFOLYVS_IIVI4ITIJE	.0-10-10
	0012						
							Scale = 1:28.8
3x4 =	1.5x4	:	3x8 =		1.5x4	3x4 =	$4x10 = 1.5x4 \parallel$
	<u></u>	T1				-6-1	
9 W1	W2	W2	W2	_		W2	W3 W1 -
~				\sim			×
	−−−− B1			B2			
₩43 1.5×4	13 3x8 —	12 3×4 — 1	11 5×4		10 3×8 —		9 8≃ 1.5×1 II 1×6 —
1.574	540	574 —			5x0 -		1.574 470
 	4-2-0	8-2-4	12-2-8			16-2-12 4-0-4	17-3-217-6-10
Plate Offsets (X,Y)	[6:0-2-0,0-2-0], [8:Edge,0-2-0]	, [13:0-2-12,0-1-8]					100 000
LOADING (psf)	SPACING- 1-4-	0 CSI .	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.0	0 TC 0.22 0 BC 0.51	Vert(LL) -0.09	10-11 10-11	>999 480 >999 360	MT20	220/195
BCLL 0.0	Rep Stress Incr N	WB 0.39	Horz(CT) 0.03	8	n/a n/a		
BCDL 5.0	Code IRC2018/TPI201	4 Matrix-SH				Weight: 16	6 lb F I = 11%
	E No 2		BRACING-	Structur	al wood sheathing	directly applied or i	6.0.0 oc purlins except
BOT CHORD 2x4 DF	No.2		TOP CHORD	end vert	ticals.	directly applied of	0-0-0 00 pullins, except
WEBS 2x4 DF	No.2		BOT CHORD	Rigid ce	iling directly applie	d or 10-0-0 oc brac	cing.
REACTIONS. (lb/size	e) 14=974/0-3-8 (min. 0-1-8	, 8=5292/0-2-10 (req. 0-2-13)					
FORCES. (lb) - Max.	. Comp./Max. Ten All forces	250 (lb) or less except when sh	nown.				
TOP CHORD 1-14:	=-949/0, 1-2=-1980/0, 2-3=-19 3=0/3213, 11, 12=0/3213, 10, 1	80/0, 3-4=-3789/0, 4-5=-3789/0), 5-6=-3789/0				
WEBS 2-13:	=-280/0, 4-10=-297/0, 6-8=-61	07/0, 6-10=0/257, 3-10=0/626,	3-13=-1340/0, 1-13=0/21	00			
NOTES-							
1) 2-ply truss to be co	nnected together with 10d (0.	131"x3") nails as follows:					
Bottom chords connect	cted as follows: 2x4 - 1 row at nected as follows: 2x4 - 1 row	J-9-0 ос. at 0-9-0 ос.					
Webs connected a	s follows: 2x4 - 1 row at 0-9-0	0C.	r haak (P) face in the LO		(C) agation Divite	n h <i>i</i>	
connections have b	been provided to distribute onl	/ loads noted as (F) or (B), unle	ess otherwise indicated.			ріу	
 The Fabrication To WARNING: Require 	lerance at joint 12 = 11%, join ed bearing size at joint(s) 8 gr	t 5 = 11% eater than input bearing size					
5) This truss is design	ned in accordance with the 20	8 International Residential Coc	de sections R502.11.1 and	d R802.1	0.2 and referenced		
standard ANSI/TPI 6) Recommend 2x6 s	ı. trongbacks, on edge, spaced	at 10-0-0 oc and fastened to ea	ach truss with 3-10d (0.13	1" X 3")	nails. Strongbacks	to be	

attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 8-14=-7, 1-7=-67 Concentrated Loads (lb) Vert: 6=-5000

		4-2-0	8-2-4		12-2-8	\$	1	16-2-12	<u>17-3-217-6-</u> 10
		4-2-0		4-0-4	4-0-4			4-0-4	1-0-6 0-3-8
Plate Offsets (X,Y) [1:0-1-12,0-1-8], [4:0-3-0			,0-3-0], [6:0-5	-4,0-2-0], [8:0-2-12,0-2-0	0], [10:0-3-4,0-2-0], [1	2:0-6-0,0-3-0]			
LOADII TCLL TCDL BCLL BCDL	VG (psf) 40.0 10.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TI	1-4-0 1.00 1.00 NO PI2014	CSI. TC 0.87 BC 0.67 WB 0.96 Matrix-SH	DEFL. Vert(LL) -0.3 Vert(CT) -0.3 Horz(CT) 0.0	in (loc) l/d 22 10-11 >9 30 10-11 >6 05 8 r	defl L/d 956 480 993 360 n/a n/a	PLATES MT20 Weight: 251 I	GRIP 220/195 b FT = 11%
LUMBE TOP CH BOT CH WEBS	i R- HORD 2x4 DF HORD 2x4 DF B2: 2x4 2x4 DF	No.2 No.2 *Except* DF 2400F 2.0E No.2			BRACING- TOP CHORD BOT CHORD	Structural v end vertica Rigid ceilin	wood sheathing d als. ng directly applied	irectly applied or 3-4 or 10-0-0 oc bracin	9-12 oc purlins, except g.
REACT	IONS. (Ib/size	e) 13=2791/0-3-8 (min.	0-1-8), 8=77	74/0-2-10 (req. 0-2-12)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-13=-2739/0, 1-2=-6201/0, 2-3=-6201/0, 3-4=-11674/0, 4-5=-17041/0, 5-6=-17041/0

BOT CHORD 11-12=0/11674, 10-11=0/14624, 9-10=0/5524, 8-9=0/5524

3-11=0/2180, 2-12=-286/0, 5-10=-8024/0, 6-8=-9552/0, 6-10=0/13049, 3-12=-5947/0, 1-12=0/6635, 4-10=0/2961, WEBS

4-11=-3612/0

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
3) WARNING: Required bearing size at joint(s) 8 greater than input bearing size.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 8-13=-7, 1-7=-67 Concentrated Loads (lb) Vert: 6=-1100 5=-8200

LUMBER-

TOP CHORD 2x4 DF No.2 BOT CHORD 2x6 DF No.2 2x4 DF No.2 WEBS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=2167/0-5-8 (min. 0-1-8), 4=2057/0-5-8 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-1372/0, 3-4=-1372/0, 1-2=-3149/0, 2-3=-3149/0

2-5=-297/0, 1-5=0/3387, 3-5=0/3387 WEBS

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 604 lb down at 0-9-8, 604 lb down at 2-1-8, 604 lb down at 3-5-8, 604 lb down at 4-9-8, and 604 lb down at 6-1-8, and 604 lb down at 7-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 4-6=-7, 1-3=-67

Concentrated Loads (lb)

Vert: 7=-604(F) 8=-604(F) 9=-604(F) 10=-604(F) 11=-604(F) 12=-604(F)

TOP CHORD 2x4 DF No.2(flat) BOT CHORD 2x4 DF No.2(flat) WEBS 2x4 DF No.2(flat)

TOP CHORD Structural wood sheathing directly applied or 3-6-8 oc purlins, except end verticals.
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=623/Mechanical, 5=3028/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 4-5=-253/0, 2-3=-761/0

BOT CHORD 6-7=0/475, 5-6=0/761

WEBS 3-6=-362/0, 2-6=0/456, 2-7=-758/0, 3-5=-2861/0

NOTES-

1) Fasten trusses together to act as a single unit as per standard industry detail, or loads are to be evenly applied to all plies.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-7=-7, 1-4=-67 Concentrated Loads (lb) Vert: 3=-3400

Project # 2200345

Sales: Ken Price (360) 384.9000-Ext:28 kprice@louwstruss.com

Roof area: 3775.08 sq ft

Date: 3/16/2022

Name: BARCELO HOMES/93RD AVE 7216 93RD AVE SE MERCER ISLAND WA 98040 Sub.: Lot: # 1

Job	Truss	Truss	Туре			Qty	Ply	BARCE	LO HOMES	6/93RD AV	E		
2200345	F08	Floor S	upported Gable			1	1		. ,	<i></i>			
Louws Truss, Inc., Fernd	lale, WA 98248				Run: 8.530	s Feb 23	2022 Print: 8	JOD R 3.530 s Fe	eference (b 23 2022 1	optional) MiTek Indus	stries, Inc. Wed	Mar 16 09:29	:38 2022 Page 1
						_SBZZHS	кнуулзо	L?LUZA	Jv4-ueyix	at6EOZu	9thakvk?Uip	KNQ I WU12	ZUTABAJQZANGE
													Scale = 1:38.3
$4x$ $4x5 =$ $1 \qquad 2 \qquad \text{weights}$	5 = 4 5 6	7	8 9	10	11	12	13	14	3x6 15 1	FP= 6 17	18	19 2	0 21
	976 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ST1	ST1 ST1	ST1	ST1	ST1	ST1 B3	ST1	ST1	ST1	ST1 \$	ST1 S	1 W5 0-9-1
440000004004040404 3x4 = 40 4x10	0 39 38 37 36 = 3x4 = 3x6 FP=	35	34 33	32	31	30	29	28	27	26	25	24 2	3 22
1-10-	4 4 - [1:Edge,0-0-12], [39:0-1-8	Edge], [44:0)-2-8,Edge]		<u>23-</u> 7- 21-9-	40							<u>23-10-</u> 12 0-3-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 1.00 1.00 YES 2014	CSI. TC 0.06 BC 0.01 WB 0.02 Matrix-SH		DEFL. Vert(LL Vert(C1 Horz(C	i) n/ ⁻) n/ T) 0.0	n (loc) a - a - 0 22	l/defl n/a n/a n/a	L/d 999 999 n/a		PLATES MT20 Weight: 103	GRIP 220/195 Ib FT =	5 20%F, 11%E
LUMBER- TOP CHORD 2x4 D BOT CHORD 2x4 D)F No.2(flat))F No.2(flat)				BRACI TOP CI	NG- Hord	Structur end ver	ral wood	l sheathin	ig directly	applied or 10	0-0-0 oc pu	rlins, except

WEBS 2x4 DF No.2(flat)

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 23-10-12.

2x4 DF No.2(flat)

(b) - Max Grav All reactions 250 lb or less at joint(s) 22, 43, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 44, 42

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x4 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Bearing at joint(s) 44 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 43, 44, 42.
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
9) CAUTION, Do not erect truss backwards.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 987 lb uplift at joint 24.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

2) Refer to girder(s) for truss to truss connections.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

3) Refer to girder(s) for truss to truss connections.

7) CAUTION, Do not erect truss backwards.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1488/0, 3-4=-1488/0, 4-5=-1697/0, 5-6=-1488/0, 6-7=-1488/0 BOT CHORD 13-14=0/913, 12-13=0/1697, 11-12=0/1697, 10-11=0/1697, 9-10=0/913

WEBS 7-9=-1042/0, 2-14=-1042/0, 7-10=0/656, 2-13=0/656, 5-10=-350/12, 4-13=-350/12

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

REACTIONS. (lb/size) 9=580/0-3-8 (min. 0-1-8), 14=588/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1504/0, 3-4=-1504/0, 4-5=-1724/0, 5-6=-1525/0, 6-7=-1525/0

BOT CHORD 13-14=0/922, 12-13=0/1724, 11-12=0/1724, 10-11=0/1724, 9-10=0/957

7-9=-1073/0, 2-14=-1052/0, 7-10=0/648, 2-13=0/665, 5-10=-344/22, 4-13=-359/7 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Plate Offsets (X,Y) [<u>7-8-4</u> 7-8-4 1:Edge,0-0-12], [4:0-1-8,Edge], [5:0-1	-8,Edge]	8-7-4 8-1-12 0-5-80-5-8	<u>16-0-0</u> 7-4-12		<u>16-3</u> 78 0-3-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.24 BC 0.43 WB 0.19 Matrix-SH	DEFL. in Vert(LL) -0.09 Vert(CT) -0.12 Horz(CT) 0.03	(loc) l/defl L/d 12 >999 480 12 >999 360 9 n/a n/a	PLATES GRIP MT20 220/1 Weight: 77 lb FT	95 Г = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc or 10-0-0 oc bracing.	purlins, except

REACTIONS. (lb/size) 9=593/0-3-8 (min. 0-1-8), 14=593/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1521/0, 3-4=-1521/0, 4-5=-1747/0, 5-6=-1521/0, 6-7=-1521/0 BOT CHORD 13-14=0/930, 12-13=0/1747, 11-12=0/1747, 10-11=0/1747, 9-10=0/930

7-9=-1061/0, 2-14=-1061/0, 7-10=0/675, 2-13=0/675, 5-10=-377/1, 4-13=-377/1 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

	5-1-8	6-5-4	7-9-0	12-1	7-0 12-10 _r 8
Γ	5-1-8	1-3-12	1-3-12	4-10	D-O 0-3-8
Plate Offsets (X,Y)	[1:Edge,0-0-12], [4:0-1-8,Edge], [11:0	-1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.20 BC 0.29 WB 0.14 Matrix-SH	DEFL. in Vert(LL) -0.04 Vert(CT) -0.06 Horz(CT) 0.01	(loc) l/defl L/d 9-10 >999 480 8-9 >999 360 8 n/a n/a	PLATES GRIP MT20 220/195 Weight: 62 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2(flat) No.2(flat) No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 8=467/Mechanical, 12=467/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1064/0, 3-4=-1064/0, 4-5=-1066/0, 5-6=-1066/0 BOT CHORD 11-12=0/706, 10-11=0/1064, 9-10=0/1064, 8-9=0/703

6-8=-803/0, 2-12=-806/0, 6-9=0/413, 2-11=0/409 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93F	RD AVE
2200345	F10	GABLE	1	1	Job Reference (optio	nnal)
Louws Truss, Inc., Ferndale, WA	A 98248		Run: 8.530 s Feb 23 20 ID:MIN_sBZ2H5RI	22 Print: 8. Jwyln3cL	530 s Feb 23 2022 MiTe ?L0zaOV4-FN?6Qhm	k Industries, Inc. Wed Mar 16 09:29:47 2022 Page 1 Jl69ickFzuMu56LfHHg3Yh55MpkTpZXPzaNG2
				,		
						Scale - 1:30 4
						Soale - 1.00.4
3x4 =						
1 2 <u>3</u>	4 5 6	7 8	9 10	11	12 13	14 15 16 17
				<u>i</u>		
	ST2 ST2 ST	2 ST2 ST2	ST2 ST2	ST2	ST2 ST2	ST2 ST2 ST2 W3 G
			в2			
32 3x4	31 30 29	28 27	26 25	24	23 22	21 20 19 18
1 10 4						
1-7-0 1-3-12 1-4-0 2-8-1	0 4-0-0 5-4-0	6-8-0 8-0-0 9-4	-0 , 10-8-0 , 12-0-0) 13	-4-0 , 14-8-0 ,	19-1-12 16-0-0 , 17-4-0 , 18-8-0 18-10-4,
1-3-12 0-0-4 0-9-1 0-3-0	2 1-4-0 1-4-0	1-4-0 1-4-0 1-4	-0 1-4-0 1-4-0	1-	4-0 1-4-0	1-4-0 1-4-0 1-4-0 0-2-4 0-3-8
O-3-4 Plate Offsets (X,Y) [1:Ec	lge,0-0-12], [2:0-1-8,Edge]	, [18:Edge,0-0-12]				
	SPACING- 1-4-0		DEEL in	(loc)	l/defl l/d	
TCLL 40.0	Plate Grip DOL 1.00	TC 0.04	Vert(LL) n/a	-	n/a 999	MT20 220/195
BCLL 0.0	Rep Stress Incr YES	WB 0.01	Horz(CT) n/a	- 18	n/a 999 n/a n/a	
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH				Weight: 80 lb FT = 20%F, 11%E
LUMBER-	2(flat)		BRACING-	Structure	al wood sheathing di	rectly applied or 10-0-0 oc purlins except
BOT CHORD 2x4 DF No.	2(flat)			end verti	icals.	
OTHERS 2x4 DF No.:	2(flat) 2(flat)		BOICHORD	Rigia cei	lling directly applied	or 10-0-0 oc bracing.
REACTIONS. All bearir	ngs 19-1-12.					
(lb) - Max Uplift Max Grav	All uplift 100 lb or less at jo	oint(s) 18 s at joint(s) 35, 18, 32, 33, 34	31 30 29 28 27 26 25	24 23 3	22	
2	1, 20, 19	·	,,,,,,,,	, _0, 2	,	

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x4 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Bearing at joint(s) 33 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18.
7) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 35, 34.
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 10) CAUTION, Do not erect truss backwards.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=537.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) CAUTION, Do not erect truss backwards.

					17-6-0						17-9 ₅ 8
	I				17-6-0						0-3-8
Plate Offse	ets (X,Y) [1:0-4-8,Edge], [13:0-1-8,	Edge], [14:0-1-	8,Edge], [16:Edge,0-0-12	2]						
					•						
LOADING	(psf)	SPACING-	1-4-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.Ó	Plate Grip DOL	1.00	TC 0.20	Vert(LL)	-0.11	<u>`</u> 13́	>999	480	MT20	220/195
TCDL	10.0	Lumber DOL	1.00	BC 0.46	Vert(CT)	-0.15	12-13	>999	360		
BCLI	0.0	Rep Stress Incr	YES	WB 0.25	Horz(CT)	0.03	11	n/a	n/a		
BCDL	5.0	Code IRC2018/TF	PI2014	Matrix-SH		0.00	••			Weight: 90 lb	FT = 20%F, 11%E
I IIMBER-					BRACING-						
TOP CHO	RD 2x4 DF	No 2(flat)			TOP CHOR	סא	Structu	iral wood	sheathing dir	ectly applied or 6-0	-0 oc purlins except
BOT CHO	RD 2x4 DF	No 2(flat)			101 01101		end ve	rticals	enedaning di	oonj appnou or o o	e ee painie, except
WEBS	2x4 DF	No.2(flat)			BOT CHOR	RD	Rigid c	eilina dir	ectly applied o	or 10-0-0 oc bracino	L.
OTHERS	2x4 DF	No.2(flat)									

REACTIONS. (lb/size) 11=635/Mechanical, 18=623/0-5-8 (min. 0-1-8)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-1090/0, 2-3=-1086/0, 3-4=-1086/0, 4-5=-2001/0, 5-6=-2001/0, 6-7=-2001/0, 7-8=-1675/0, 8-9=-1675/0

 BOT CHORD
 14-15=0/1704, 13-14=0/2001, 12-13=0/1979, 11-12=0/1008

- 9-11=-1150/0, 1-15=0/1119, 9-12=0/761, 4-15=-705/0, 7-12=-347/0, 4-14=0/411, 1-18=-642/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Refer to girder(s) for truss to truss connections.

4) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards.

1) Unbalanced floor live loads have been considered for this design.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=560.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

	[1:0.4.9 Edge] [12:0.1.9 Edge] [14:0	1 9 Edgo] [16:Edgo 0 0 :	17-9-8 17-9-8				<u>18-1₁0</u> 0-3-8
Flate Offsets (A, T)	[1.0-4-0,Euge], [13.0-1-0,Euge], [14.0	-1-8,Eugej, [10.Euge,0-0-	12]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.48 WB 0.25 Matrix-SH	DEFL. in Vert(LL) -0.12 Vert(CT) -0.17 Horz(CT) 0.03	(loc) l/defl 12-13 >999 12-13 >999 11 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 91 lb	GRIP 220/195 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF OTHERS 2x4 DF	⁻ No.2(flat) - No.2(flat) - No.2(flat) - No.2(flat) - No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood end verticals. Rigid ceiling dir	l sheathing di ectly applied	rectly applied or 6-0 or 10-0-0 oc bracing	I-0 oc purlins, except J.

REACTIONS. (lb/size) 11=646/0-3-8 (min. 0-1-8), 18=634/0-5-8 (min. 0-1-8)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-1111/0, 2-3=-1107/0, 3-4=-1107/0, 4-5=-2065/0, 5-6=-2065/0, 6-7=

 BOT CHORD
 14-15=0/1744, 13-14=0/2065, 12-13=0/2038, 11-12=0/1028

1-2=-1111/0, 2-3=-1107/0, 3-4=-1107/0, 4-5=-2065/0, 5-6=-2065/0, 6-7=-2065/0, 7-8=-1714/0, 8-9=-1714/0 14-15=0/1744, 13-14=0/2065, 12-13=0/2038, 11-12=0/1028

9-11=-1173/0, 1-15=0/1142, 9-12=0/783, 4-15=-728/0, 7-12=-371/0, 4-14=0/435, 1-18=-652/0 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Job	Truss	Truss Type		Qty Ply	BARCELO H	OMES/93RD AVE]
2200345	F11	FLOOR SUPPORTED GABL		1		aco (ontional)		
Louws Truss, Inc., Ferndal	le, WA 98248		Run: 8.530 s	Feb 23 2022 Print	JOD Referen	nce (optional) 2022 MiTek Indust	tries, Inc. Wed M	1ar 16 09:29:52 2022 Page 1
			ID:M	N_SBZ2H5RHW	yin3cL?LUZaON	/4-cKo?TPquxii	KVFISS9KNHZI	_5e4D0mis YtiXKCczaNFz
								Scale = 1:28.1
5x6 —								5x6 =
	3 4 ••••• •••	5 6 7	7 8 • T1 • • •	9 ¶	10 •	11 পদ্ম	12 • • ហា	13 14
	<u>Ř</u>		<u>8</u> 1	Ŷ	Ŷ	ů	Ĥ	
g W1 W2 ST1	ST1 ST1	ST1 ST1 S	ST1 ST1	ST1	ST1	ST1	ST1	ST1 W2 W1 &
		8	X B1 X	8	23	X	8	
	병			<u>P</u>				
28 27	26 25	24 23 2	22 21	20	19	18	17	16 15
3x4 5x6 =								5x6 = 3x4
			17-0-8					17-4-0
	[1.Edgo 0 1 9] [14:0 1 9 Edge	1 [16:0 1 9 Edge] [07:0 1 9 E	17-0-8					0-3-8
Plate Offsets (X, f)	[1.Eage,0-1-0], [14.0-1-0,Eage], [10.0-1-0,⊏uge], [27.0-1-0,⊏						
LOADING (psf) TCLL 40.0	Plate Grip DOI 1.0	D CSI. D TC 0.23	DEFL. Vert(LL)	in (loc) n/a -	l/defl L/	d 9	PLATES MT20	GRIP 220/195
TCDL 10.0	Lumber DOL 1.0	BC 0.19	Vert(CT	n/a -	n/a 99	9		220,100
BCLL 0.0 BCDL 5.0	Rep Stress Incr NC Code IRC2018/TPI201	0 WB 0.32 4 Matrix-SH	Horz(C1) -0.01 21	n/a n/a	a	Weight: 75 lb	FT = 20%F, 11%E
							5	
TOP CHORD 2x4 DF	No.2(flat)		TOP CH	ORD Struct	tural wood she	athing directly	applied or 6-0	0-0 oc purlins, except
BOT CHORD 2x4 DF	No.2(flat)		BOT CH		erticals.	applied or 6.0		
OTHERS 2x4 DF	No.2(flat)		BOTCI	OILD INgiu	centry directly		-0 oc bracing.	
REACTIONS All b	earings 17-4-0							
(lb) - Max U	plift All uplift 100 lb or less at	oint(s) except 28=-1388(LC 6)), 15=-1388(LC 7), 27=-1370(LC	7),			
Max G	16=-1370(LC 6) ray All reactions 250 lb or les	s at ioint(s) 26, 25, 24, 23, 22,	21, 20, 19, 18, 1	7 except 28=14	04(LC 5).			
	15=1404(LC 4), 27=1422(LC 4), 16=1422(LC 5)						
FORCES. (lb) - Max.	Comp./Max. Ten All forces	250 (lb) or less except when sl	hown.					
TOP CHORD 1-28=	-1401/1391, 14-15=-1401/139	01, 1-2=-1271/1272, 2-3=-1100	0/1080, 3-4=-900	/900,				
10-11	=-700/700, 11-12=-900/900, ²	2-13=-1100/1080, 13-14=-127	71/1272					
BOT CHORD 26-27 20-21	7=-1100/1100, 25-26=-900/900 =-300/300_19-20=-500/500_7), 24-25=-700/700, 23-24=-500 8-19=-700/700 17-18=-900/9	0/500, 22-23=-30	0/300, /1100				
WEBS 1-27=	-1902/1901, 14-16=-1902/190	1	00, 10-11-1100	1100				
NOTES-								
1) Unbalanced floor liv	ve loads have been considere	d for this design.						
 2) All plates are 1.5x4 3) Gable requires con 	tinuous bottom chord bearing.	itea.						
4) Truss to be fully she	eathed from one face or secur	ely braced against lateral mov	ement (i.e. diago	nal web).				
6) Provide mechanica	l connection (by others) of trus	s to bearing plate capable of v	withstanding 138	3 lb uplift at joint	t 28, 1388 lb u	plift at joint 15		
, 1370 lb uplift at joi 7) This truss is design	int 27 and 1370 lb uplift at join	t 16. 8 International Residential Cod	de sections R50'	2 11 1 and R800	2 10 2 and refe	renced		
<i>i</i>) i i i i u u u u u u u u u u u u u u u	ed in accordance with the 201					renceu		

7) This truss has been designed for a total drag load of 150 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0 to 17-4-0 for 150.0 plf.
9) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

TOP CHORD 2x4 DF No.2(flat) BOT CHORD 2x4 DF No.2(flat) 2x4 DF No.2(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 9=631/Mechanical, 14=631/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1659/0, 3-4=-1659/0, 4-5=-1961/0, 5-6=-1659/0, 6-7=-1659/0

BOT CHORD 13-14=0/999, 12-13=0/1961, 11-12=0/1961, 10-11=0/1961, 9-10=0/999

WEBS 7-9=-1140/0, 2-14=-1140/0, 7-10=0/753, 2-13=0/753, 5-10=-499/0, 4-13=-499/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) Refer to girder(s) for truss to truss connections.
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 13=833/0-5-8 (min. 0-1-8), 20=833/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2389/0, 3-4=-2389/0, 4-5=-3411/0, 5-6=-3411/0, 6-7=-3412/0, 7-8=-3412/0, 8-9=-2390/0, 9-10=-2390/0, 10-11=-2390/0

BOT CHORD 19-20=0/1366, 18-19=0/1366, 17-18=0/3055, 16-17=0/3411, 15-16=0/3411, 14-15=0/3053, 13-14=0/1366

WEBS 11-13=-1559/0, 2-20=-1559/0, 11-14=0/1168, 2-18=0/1168, 8-14=-757/0, 4-18=-760/0, 8-15=0/409, 4-17=0/539, 6-15=-282/269

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Attach ribbon block to truss with 3-10d nails applied to flat face.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LOAD CASE(S) Standard

7) CAUTION, Do not erect truss backwards.

	7-8-4 7-8-4	8-3-148-11-8 0-7-100-7-10		<u>18-9-8</u> 9-10-0		<u>19-1</u> -0 0-3-8
Plate Offsets (X, Y)	- [1:Eage,0-0-12], [2:0-1-12,Eage], [4:0	-1-8,Eage], [8:0-1-12,Eage	ej, [12:0-1-8,Edgej			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.45 BC 0.69 WB 0.23 Matrix-SH	DEFL. in Vert(LL) -0.20 Vert(CT) -0.29 Horz(CT) 0.05	(loc) I/defl L/d 11-12 >999 480 11-12 >797 360 10 n/a n/a	PLATES GRI MT20 220 Weight: 88 lb I	P /195 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 D BOT CHORD 2x4 D WEBS 2x4 D	DF No.2(flat) DF No.2(flat) DF No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 or or 10-0-0 oc bracing.	c purlins, except

REACTIONS. (lb/size) 10=695/Mechanical, 15=695/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1881/0, 3-4=-1881/0, 4-5=-2360/0, 5-6=-2360/0, 6-7=-1893/0, 7-8=-1893/0 BOT CHORD 14-15=0/1115, 13-14=0/2360, 12-13=0/2360, 11-12=0/2309, 10-11=0/1120

8-10=-1278/0, 2-15=-1273/0, 8-11=0/882, 2-14=0/874, 6-11=-475/0, 4-14=-648/0, 6-12=-158/307 WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x4 MT20 unless otherwise indicated.

3) Gable studs spaced at 1-4-0 oc.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

LUMBER-

TOP CHORD 2x4 DF No.2 BOT CHORD 2x4 DF No.2 WEBS 2x4 DF No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-6-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=2747/0-5-8 (min. 0-1-8), 4=2780/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-2468/0, 3-4=-2468/0, 1-2=-3800/0, 2-3=-3800/0

WEBS 2-5=-2012/0, 1-5=0/4190, 3-5=0/4190

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-5-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 691 lb down at 1-5-12, and 691 lb down at 2-9-12, and 691 lb down at 4-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 4-6=-7, 1-3=-657

Concentrated Loads (lb) Vert: 5=-691(F) 7=-691(F) 8=-691(F)

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93R	RD AVE	
2200345	FT08	FLOOR GIRDER	1	4		D.	
Louws Truss, Inc., Ferndale, W	A 98248		Run: 8.530 s Feb 23 202	22 Print: 8.	530 s Feb 23 2022 MiTek	nal) Industries, Inc. Wed N	lar 16 09:29:59 2022 Page 1
10.10	1 10 10	110.000	ID:MIN_sBZ2H5R	RHwyIn3c	L?L0zaOV4-vhjfxowH	IHrCvA5uC3PJwqBn	8quSCvNWaULjBxizaNFs
1-6-12	1-10-10	1-1-2 0-9-8	2-11-2	2-11-		<u>1-8</u> <u>2-</u>	10-12
							Scale = 1:40.5
2×4 1 5×4	1	4 5x12 — 2x10 —	1.5×4	1	4×10 —	1.5×4.11	220 -
3x4 — 1.5x4	$4 \times 10 = 1.5$	4 = 5 2 = -5 6	1.5x4	1	4x10 — 8	1.5x4 Q	3xo — 10
			, 		T2 P== =		
	W4 ¥ + - W6	W6 W7 W8	W10	₩10	WI WI		₩12 1 3 0
		B2 B			B	3 [1]	
22 21			¢				
1.5x4 20	19 18	17 16 15	14		13	12	11
3x4 4x1	3x6 = 4x1	0 = 3x4 3x4 = 3x4	10x10 M18A	AHS=	3x4	4x10 =	3x4
-771	u —						
2-1-1	2 4-4-2	8-8-14 10-11-4	1/ 1 2 1/	5 7 13	17 3 1918 10 1/	20.6.12	
1-3-12 1 ₇ 7 ₇ 0	3-1-3 4-0-10 5-3-9 6-3-06-	67-5-13 8-5-6 9-8-5 10-7-12 12-	-4-15 13-10-1014-2-2		17-1-8 17-5-0	20-0-12 23	3-7-4 23-10-12
' 1-3-12 0-3-4 ' 0-3-4	'' 0-11-7'0-11-7'' 0-11-7'' 0-11-7' 0-1-8 0-1	'0-11-7''0-11-7'''0-11-7'''0-10-8'''' 1-3 4	5-11 ' 1-5-11 0-2-8 1 0-1-0	-5-11 '	1-5-11 0-2-4 1-5-14 0-1-4	1-5-14 0-2-0 3	-0-8 0-3-8
0-3-8 Plate Offsets (X V) [3:0	<u> </u>	2-4 0-2-8 0-1-12 3:0-1-12 0-1-81 [8:0-3-8 0-2-0] [11	2.0-2-8 0-2-01 [14.0-4	1-12 0-5-	<u>/1 [16·0_1_8 0_1_8]</u>	[18·0_4_0_0_2_0] [10	0.0.1.12 0.1.81 [21.0.2.4
,0-2	-0]	5.0 1 12,0 1 0], [0.0 0 0,0 2 0], [12	2.0 2 0,0 2 0], [14.0 4	+ 12,0 0		[10:0 + 0,0 2 0], [10	
	SPACING. 1-4-0	CSI	DEEI in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.87	Vert(LL) -0.47	14-15	>554 480	MT20	220/195
TCDL 15.0	Lumber DOL 1.00	BC 0.79	Vert(CT) -0.66	14-15	>399 360	M18AHS	169/162
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH	H012(C1) 0.03		11/a 11/a	Weight: 498 It	o FT = 11%
			RRACING				
TOP CHORD 2x4 DF No	.2 *Except*		TOP CHORD	Structura	al wood sheathing di	rectly applied or 4-9	-4 oc purlins, except
	F 2400F 2.0E			end vert	icals.	or 10,0,0 oo brooing	Event:
B01 CHORD 2x0 DF 24	No.2		BOT CHORD	6-0-0 oc	bracing: 21-22.		, слоері.
WEBS 2x4 DF No	.2 *Except*						
W9: 2x6 D	F No.2						
REACTIONS. (lb/size)	11=3424/Mechanical, 21=49	45/0-5-8 (min. 0-1-8)					
Max Grav	11=3427(LC 4), 21=4945(L0	; 1)					
FORCES. (lb) - Max. Co	mp./Max. Ten All forces 2	0 (lb) or less except when shown.					
TOP CHORD 10-11=-3	148/0, 1-2=-268/0, 3-4=-17	80/0, 4-5=-17180/0, 5-6=-29639/0), 6-7=-24724/0,				
BOT CHORD 19-20=0/	683, 18-19=0/9249, 17-18=	0/25632, 16-17=0/25704, 15-16=0/	/31821,				
14-15=0/	31821, 13-14=0/17680, 12-	3=0/17680, 11-12=0/409					
WEBS 20-21=0/ 3-18=0/8	400, 2-21=-433/0, 1-21=0/3 940, 5-17=0/977, 5-18=-959	2, 3-19=-1299/0, 19-21=0/8703, 3 8/0, 5-16=0/5171, 8-13=0/315, 6-1	3-21=-9691/0, 14=-7498/0.				
8-14=0/7	461, 8-12=-9435/0, 10-12=0	/8860, 6-16=-3252/0					
NOTES-							
1) 4-ply truss to be conne	cted together with 10d (0.13	1"x3") nails as follows:					
Top chords connected	as follows: 2x4 - 1 row at 0-	1-0 oc.	-+ 0 0 0				
Webs connected as fol	led as follows: 2x6 - 3 rows (2x6 - 2 rows staggered at 0-9-0	al 0-9-0 oc. oc.				
Attach TC w/ 1/2" diam	. bolts (ASTM A-307) in the	center of the member w/washers a	at 4-0-0 oc.				
Attach BC w/ 1/2" diam	n. bolts (ASTM A-307) in the	center of the member w/washers a	at 4-0-0 oc. k (B) face in the LOA		(S) section Ply to pl	V	
connections have beer	provided to distribute only	bads noted as (F) or (B), unless of	therwise indicated.		.(0) Section. Fly to pi	у	
3) Unbalanced floor live lo	bads have been considered	for this design.					
 4) All plates are MT20 pla 5) Refer to dirder(s) for transmission 	ues uniess otherwise indical	ea.					
6) This truss is designed i	in accordance with the 2018	International Residential Code see	ctions R502.11.1 and	R802.1	0.2 and referenced		
standard ANSI/TPI 1.	abacks on edge spaced at	10-0-0 oc and fastened to each tr	use with 3, 10d (0, 12	1" X 2"\ •	aile Stronghacke te	be	
attached to walls at the	er outer ends or restrained b	y other means.	uss with 5-100 (0.13	1 ^ 3) [ans. Subrydacks IC		
8) CAUTION, Do not erec	t truss backwards.		- 4 - 4 - 1 - 1 - 1 - 1	n. 2			
chord. The design/sele	ection device(s) shall be plection of such connection de	vice(s) is the responsibility of othe	rs.	in down a	al 9-9-4 on dottom		

LOAD CASE(S) Standard

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	FT08	FLOOR GIRDER	1	4	Job Reference (optional)
Louws Truss, Inc., Ferndale, W	A 98248	Run: 8.530 s ID:MIN	Feb 23 20 sBZ2H5	22 Print: 8. RHwyIn3c	530 s Feb 23 2022 MiTek Industries, Inc. Wed Mar 16 09:29:59 2022 Page 2 L?L0zaOV4-vhjfxowHHrCvA5uC3PJwqBn8quSCvNWaULjBxizaNFs

LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-10=-73, 11-20=-7, 21-22=-7 Concentrated Loads (lb) Vert: 6=-4500 16=-1982(B)

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 6-10=-7, 1-5=-67 Concentrated Loads (lb) Vert: 4=-3700

BOT CHORD 6-7=0/5418, 5-7=0/5418, 5-8=0/5418, 4-8=0/5418

WEBS 2-5=0/2564, 2-6=-5956/0, 2-4=-5956/0

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-4-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) WARNING: Required bearing size at joint(s) 6 greater than input bearing size.

4) Refer to girder(s) for truss to truss connections.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 3414 lb down at 0-1-12, 830 lb down at 0-1-12, 579 lb down at 1-6-12, 828 lb down at 1-8-4, 255 lb down at 2-10-12, 828 lb down at 3-0-4, and 828 lb down at 4-4-4, and 271 lb down at 4-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Úniform Loads (plf)

Vert: 4-6=-7, 1-3=-767

Concentrated Loads (lb)

Vert: 5=-1083(F=-255, B=-828) 6=-4244(F=-3414, B=-830) 7=-1407(F=-579, B=-828) 8=-1099(F=-271, B=-828)

1 1000 0110010 (71,17)	[1.0 1 12,0 1 0], [0.0 0 0,0 1 12], [10.	.0 1 0,0 2 0], [11.0 2 12,		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.93 BC 0.75 WB 0.68 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.47 13-14 >581 480 Vert(CT) -0.65 13-14 >422 360 Horz(CT) 0.09 11 n/a n/a	PLATES GRIP MT20 220/195 M18AHS 169/162 Weight: 304 lb FT = 11%
LUMBER- TOP CHORD 2x4 DI T2: 2x BOT CHORD 2x4 DI WEBS 2x4 DI	= 2400F 2.0E *Except* 4 DF No.2 = 2400F 2.0E = No.2		BRACING- TOP CHORD Structural wood sheathing end verticals. BOT CHORD Rigid ceiling directly applie	directly applied or 3-3-12 oc purlins, except d or 10-0-0 oc bracing.

REACTIONS. (lb/size) 11=3666/0-5-8 (min. 0-1-8), 17=2018/0-3-8 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-8449/0, 3-4=-8449/0, 4-5=-14917/0, 5-6=-14917/0, 6-7=-18451/0, 7-8=-18451/0, 8-9=-18451/0

BOT CHORD 16-17=0/4480, 15-16=0/11933, 14-15=0/11933, 13-14=0/16994, 12-13=0/9803, 11-12=0/9803

7-13=-3937/0, 2-17=-4746/0, 2-16=0/4306, 4-16=-3780/0, 4-14=0/3238, 6-14=-2332/0, 6-13=0/1636, 9-13=0/9185, WEBS 9-11=-10177/0

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-4-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) All plates are MT20 plates unless otherwise indicated.

4) The Fabrication Tolerance at joint 15 = 11%, joint 8 = 11%

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 11-17=-7, 1-10=-67

Concentrated Loads (lb) Vert: 7=-4000

Job	Truss	Truss 1	уре		Qty	Ply	BARCELO HOMES/93	BRD AVE		
2200345	FT13	Floor Gi	der		1	2	Inh Reference (and	ional)		
Louws Truss, Inc., Ferndale	e, WA 98248	I		Run: 8.530	S Feb 23 2	022 Print: 8	530 s Feb 23 2022 MiT	ek Industries, Inc. We 9nAzni 4il fiCzIENe	ed Mar 16 09:3	0:03 2022 Page
_ 1-3-4 _ 1-3-	-4 2-2-14				VIIN_SDZ	21131311109	1-7-6 2.	6-15 <u>1-9</u>	-6 , 1-9-	6 ,
· · · + · ·									-	
										Scale = 1:4
1.5x4 3x4 =	1.5x4 3x6 =	1.5x4	3x4 =	1.5x4	3x4 = 3	3x8 = 1.5	5x4 3x10 =	1.5x4	3x10 =	1.5x4
1 2	3 4	5 	6	7	8	9 1	0 11	12 	13	1424
9 W W2 W	2 1 1/3	W3 8	W3 W3	W3		₩3	W4	W5 W	6 We	× W
	B1						₫ 8 2 ₩			<u>></u>
I	×									X
23	22	21	20	19		1	8 17	16		15
4x4 =	3x8 =	4x10 =	6X6 =	3x8 =		3)	4x10	4x10 =		4x4 =
							20-7-12 19-0- 12 -4-4	2		
<u>2-11-12</u> 2-11-12			<u>17-5-6</u> 14-5-10				<u>18-3-1</u> <u>19-2-8</u> 0-9-11 0-1-12 1-3-8	+21-11-3 1-3-8	25-9-8 3-10-5	26-1-0 0-3-8
Plate Offsets (X,Y) [4	4:0-2-12,0-1-8], [6:0-1-12	2,0-1-8], [11:0-	2-8,0-1-8], [13:0-4-0,0	0-1-8], [16:0-2-1	2,0-1-12	, [19:0-2-	0-9-10-1-12 12,0-1-8], [21:0-4-0	.0-2-8]		
		140	<u></u>			(loo)			CDID	
TCLL 40.0	Plate Grip DOL	1.00	TC 0.99	Vert(LL) -0.53	8 18-19	>517 480	MT20	220/19	95
TCDL 10.0	Lumber DOL Rep Stress Incr	1.00	BC 0.95	Vert(CT) -0.73	3 18-19 15	>378 360			
BCDL 5.0	Code IRC2018/TP	12014	Matrix-SH	1012(0	1) 0.00	, 10	n/a n/a	Weight: 26	67 lb FT =	: 11%
UMBER-				BRACI	NG-			1		
TOP CHORD 2x4 DF	No.2			TOP CI		Structur Bigid or	al wood sheathing o	directly applied, e	xcept end v	erticals.
BOT CHORD 2x0 DI B2: 2x6	DF 2400F 2.0E				IOND	6-0-0 0	c bracing: 22-23.		cing, Lice	pi.
WEBS 2x4 DF	No.2									
REACTIONS. (lb/size	e) 15=2791/0-5-8 (min.	0-1-8), 22=18	76/0-3-8 (min. 0-1-8)							
FORCES. (lb) - Max.	Comp./Max. Ten All for	rces 250 (lb) c	r less except when sl	nown.						
TOP CHORD 4-5=-{	5923/0, 5-6=-5923/0, 6-7	=-10472/Ò, Ź-8	8=-10472/0, 8-9=-135	59/0, 9-10=-135	59/0, 10	-11=-135	59/0,			
30T CHORD 21-22	=-8766/0, 12-13=-8766/0 =0/3191, 20-21=0/8472,	' 19-20=0/8472	, 18-19=0/12350, 17-	18=0/14365, 16	-17=0/14	365, 15-1	6=0/4538			
NEBS 4-22=	-3404/0, 4-21=0/3043, 6	21=-2837/0, 6	-19=0/2236, 8-19=-2	096/0, 8-18=0/1	616, 11-1	18=-1252	/0,			
11-10	0013/0, 13-10-0/4094,	10-10-0077	0, 11-17-0/2490							
NOTES- 1) 2-plv truss to be cor	nnected together with 10	d (0.131"x3") r	ails as follows:							
Top chords connect	ted as follows: 2x4 - 1 rov	v at 0-4-0 oc.								
Webs connected as	follows: 2x4 - 1 row at 0	rows stagger -9-0 oc.	ed at 0-3-0 oc.							
2) All loads are consid	ered equally applied to a	Il plies, except	if noted as front (F) of	or back (B) face	in the LC	AD CAS	E(S) section. Ply to	ply		
3) Unbalanced floor liv	e loads have been consi	dered for this	design.		uicaleu.					
 The Fabrication Tole This truss is designed 	erance at joint 20 = 11%, ed in accordance with the	joint 9 = 11% 2018 Interna	tional Residential Co	de sections R50	2 11 1 ar	nd R802 1	0.2 and referenced			
standard ANSI/TPI	1.	2010 Interna			2.11.1 ui					
 Recommend 2x6 str attached to walls at 	rongbacks, on edge, spa their outer ends or restra	ced at 10-0-0 ined by other	oc and fastened to e means	ach truss with 3	-10d (0.1	31" X 3")	nails. Strongbacks	to be		
7) CAUTION, Do not e	erect truss backwards.									
8) Hanger(s) or other of chord. The design/s	connection device(s) sha selection of such connec	l be provided tion device(s)	sufficient to support c s the responsibility of	oncentrated loa	d(s) 2776	b lb down	at 19-2-8 on bottor	n		
		(3)	,							
1) Dead + Floor Live (I	balanced): Lumber Increa	ase=1.00, Plat	e Increase=1.00							
Uniform Loads (plf)	7 1-1467									
Concentrated Loads	s (lb)									
Vert: 17=-27	776(B)									

Project # 2200345

Sales: Ken Price (360) 384.9000-Ext:28 kprice@louwstruss.com

Roof area: 3775.08 sq ft

Date: 3/7/2022

Name: BARCELO HOMES/93RD AVE 7216 93RD AVE SE MERCER ISLAND WA 98040 Sub.: Lot: # 1

REACTIONS. (lb/size) 6=77/Mechanical, 8=389/0-7-12 (min. 0-1-8) Max Horz 8=42(LC 7) Max Uplift6=-33(LC 8), 8=-186(LC 4) Max Grav6=117(LC 34), 8=389(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-153/290

BOT CHORD 2-8=-268/146, 7-11=-255/160, 6-11=-255/160

1-8=-312/161 WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 6 and 186 lb uplift at joint 8. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 83 lb down and 166 lb up at 4-8-8, and 83 lb down and 166 lb up at 4-8-8 on top chord, and 1 lb down at 4-8-8, and 1 lb down at 4-8-8 on bottom chord. The design/selection of

such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-64, 3-4=-14, 8-9=-16, 5-7=-16 Concentrated Loads (lb) Vert: 10=108(F=54, B=54)

Job		Truss	Truss Type			Qty	Ply	BARCELO HOMES/93RD AVE
2200345		CJ02	Diagonal Hip Girder			1	1	Job Reference (optional)
Louws Truss	, Inc., Ferndale, W	A 98248			Run: 8.530	s Feb 23 2	022 Print: 8	.530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:05:03 2022 Page 1
		4-5-9	4-8-8	8-7-9		STDWWIN	12-1-1	
1		4-5-9	0-2-15	3-11-2	1		3-6-1	3-9-9
								Scale = 1:26.7
				(0.18 12			

1		<u>4-5-9</u> 4-5-9	<u>4-8-8</u> 0-2-15	7-6-7 2-9-15	<u>8-6-2 8-7-9</u> 0-11-110-1-7	10-4-6 1-8-12	12-1-10	13-2-5 15-11-3 1-0-11 2-8-14
Plate Offs	ets (X,Y) [1:0-1-12,0-2-0], [2:0-1-1	2,0-2-0], [4:0-	3-8,0-1-8], [8:0-1-8,0-1-	8], [11:0-6-0,0-2-12]			
LOADING TCLL TCDL BCLL BCDL	i(psf) 25.0 7.0 0.0 * 8.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 NO Pl2014	CSI. TC 0.39 BC 0.68 WB 0.40 Matrix-SH	DEFL. Vert(LL) -C Vert(CT) -C Horz(CT) -C	in (loc) 0.06 11-12 0.10 11-12 0.01 13	l/defi L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 220/195 Weight: 73 lb FT = 10%
LUMBER- TOP CHORD 2x4 DF No.2 BOT CHORD 2x4 DF No.2 BRACING- TOP CHORD WEBS 2x4 DF No.2 WEBS 2x4 DF No.2 BOT CHORD Structural wood sheathing direct end verticals. BOT CHORD Rigid ceiling directly applied or (g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing.		
REACTIONS. (Ib/size) 13=333/Mechanical, 8=392/Mechanical, 11=1282/0-7-12 (min. 0- Max Horz 11=40(LC 7) Max Uplift13=-94(LC 4), 8=-109(LC 10), 11=-441(LC 4)				(min. 0-1-8)	MiTel instal Instal	k recommends that led during truss ere lation guide.	t Stabilizers and required cross bracing be action, in accordance with Stabilizer	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-13=-300/106, 1-2=-971/273, 2-3=-95/345, 3-14=-139/486, 4-14=-139/489 BOT CHORD 12-15=-282/968, 11-15=-282/968, 3-11=-304/123, 9-17=-169/500, 8-17=-169/500 WEBS 1-12=-241/837, 2-11=-1332/375, 9-11=-191/667, 4-11=-1021/331, 4-8=-430/167								
NOTES-								

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 13, 109 lb uplift at joint 8 and 441 lb uplift at joint 11.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 44 lb up at 4-8-8, and 25 lb down and 44 lb up at 4-8-8 on top chord, and 15 lb down at 4-8-8, 15 lb down at 4-8-8, 180 lb down and 81 lb up at 7-6-7, 180 lb down and 81 lb up at 7-6-7, 159 lb down and 76 lb up at 10-4-6, 116 lb down and 283 lb up at 10-4-6, and 247 lb down and 97 lb up at 13-2-5, and 38 lb down and 28 lb up at 13-2-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-64, 5-6=-14, 11-13=-16, 7-10=-16

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	CJ02	Diagonal Hip Girder	1	1	
					Job Reference (optional)
Louws Truss, Inc., Ferndale, W.	A 98248	Run: 8.530 s	5 Feb 23 2	022 Print: 8	530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:05:03 2022 Page 2
		ID:9Hio73	SYbwwlM	uP1LBRn	gdvzdJHT-XJKzag7TT48Zkyme8ek56QULOTVzqX6vkqNLp_zdH4_

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 12=-17(F=-9, B=-9) 2=-4(F=-2, B=-2) 15=-360(F=-180, B=-180) 16=-90(F=-159, B=69) 17=-284(F=-247, B=-38)

- BOT CHORD
- 8-12=-132/286, 12-13=-132/286, 7-13=-132/286
- 1-9=-307/162, 3-8=-397/210 WEBS

NOTES-

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS
- (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 7 and 227 lb uplift at joint 9. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 83 lb down and 166 lb up at 4-8-8, and 83 lb down and 166 lb up at 4-8-8 on top chord, and 1 lb down at 4-8-8, 1 lb down at 4-8-8, and 61 lb down and 42 lb up at 7-6-7, and 61 Ib down and 42 lb up at 7-6-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-4=-64, 4-5=-14, 9-10=-16, 6-8=-16 Concentrated Loads (lb)
 - Vert: 11=108(F=54, B=54) 13=-122(F=-61, B=-61)

Scale = 1:41.3

⊢			23-0-0				
Plate Offsets (X,Y)	[2:0-2-1,0-0-7], [20:0-2-1,0-0-7]		23-0-0				
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 1 15	CSI.	DEFL.	n (loc)	l/defl	L/d 120	PLATES GRIP
TCDL 7.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.02 WB 0.02	Vert(CT) -0.0 Horz(CT) 0.0	0 21	n/r n/a	90 n/a	W120 220/195
BCDL 8.0	Code IRC2018/TPI2014	Matrix-SH		0 20			Weight: 140 lb FT = 10%
LUMBER- TOP CHORD 2x6 D	F No.2		BRACING- TOP CHORD	Structu	iral wood	l sheathing o	directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 DF No.2

OTHERS 2x4 DF No.2

SLIDER Left 2x4 DF No.2 1-6-5, Right 2x4 DF No.2 1-6-5

REACTIONS. All bearings 23-0-0.

(lb) - Max Horz 2=-70(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 30, 31, 32, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20 Max Grav All reactions 250 lb or less at joint(s) 2, 29, 30, 31, 32, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 2-2-0, Exterior(2N) 2-2-0 to 11-6-0, Corner(3R) 11-6-0 to 15-1-3, Exterior(2N) 15-1-3 to 24-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 3x4 MT20 unless otherwise indicated.

- 5) Plates checked for a plus or minus 15 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 1-4-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 30, 31, 32, 34, 35, 36, 37, 28, 27, 26, 25, 24, 23, 22, 20.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.

Scale = 1:37.7

			18-3-0				
Plate Offsets (X,Y)	[2:0-3-8,Edge], [3:0-1-10,0-2-0], [15:0	-1-10,0-2-0], [16:0-3-8,Ec	dge]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.41 BC 0.12 WB 0.07 Matrix-SH	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) l/defl L/d 17 n/r 120 17 n/r 90 16 n/a n/a	PLATES GRIP MT20 220/195 Weight: 111 lb FT = 10%		
LUMBER- TOP CHORD 2x6 DF BOT CHORD 2x4 DF OTHERS 2x4 DF SLIDER Left 2x- REACTIONS. All b (b) - Max H	JUMBER- OP CHORD 2x6 DF No.2 OT CHORD 2x4 DF No.2 TOP CHORD JTHERS 2x4 DF No.2 JEIDER Left 2x4 DF No.2 1-0-9, Right 2x4 DF No.2 1-0-9 REACTIONS. All bearings 18-3-0.						
(ib) - Max H Max U Max G	plift All uplift 100 lb or less at joint(s) 31=-428(LC 1), 16=-102(LC 9) rav All reactions 250 lb or less at join 2=787(LC 1), 31=311(LC 8)	25, 26, 27, 28, 30, 23, 22 nt(s) 24, 25, 26, 27, 28, 30	2, 21, 20, 19, 18 except 2 0, 23, 22, 21, 20, 19, 18	2=-482(LC 8), , 16 except			
FORCES.(lb) - Max.TOP CHORD2-3=-WEBS3-31=	Comp./Max. Ten All forces 250 (lb 261/206 341/360) or less except when sho	own.				
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable er 12-8-11 to 19-9-0 z reactions shown: L	e loads have been considered for thi Vult=110mph (3-second gust) Vasd= nd zone and C-C Corner(3E) -4-0-0 to one; cantilever left and right exposed umber DOI =1.60 plate grip DOI =1.6	s design. 37mph; TCDL=4.2psf; BC 5 -0-4-13, Exterior(2N) -0- ; end vertical left and righ	CDL=3.0psf; h=25ft; Cat -4-13 to 9-1-8, Corner(3 ht exposed;C-C for men	II; Exp C; Enclosed; MWFR R) 9-1-8 to 12-8-11, Exterior abers and forces & MWFRS	دs (2N) for		

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 1.5x4 MT20 unless otherwise indicated.

5) Plates checked for a plus or minus 15 degree rotation about its center.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 1-4-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 27, 28, 30, 23, 22, 21, 20, 19, 18 except (jt=lb) 2=482, 31=428, 16=102.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 16.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 4-6=-288/165

WEBS 2-14=-392/187, 3-10=-297/134

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-8-15, Interior(1) 3-8-15 to 11-5-6, Exterior(2R) 11-5-6 to 15-0-9, Interior(1) 15-0-9 to 20-1-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Plates checked for a plus or minus 15 degree rotation about its center.

6) Gable studs spaced at 1-4-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 13, 8, 7 except (jt=lb) 14=148, 6=130.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job		Truss	Truss Type	Qt	у	Ply	BARCELO HOMES/93R	D AVE		
2200345		H01	Hip Girder	1		1	Job Reference (optic	nal)		
Louws Tru	ss, Inc., Ferndale, W	A 98248		Run: 8.530 s Fe	eb 23 20	022 Print: 8	530 s Feb 23 2022 MiTe	k Industries, Inc. Mon	Mar 7 13:05:10 2022	Page 1
	1-10-4	5-4-4		9-4-4	100000		12-10-4		14-8-8	74201151
	1-10-4	3-6-0	I	4-0-0		I	3-6-0	I .	1-10-4	
									Scale	= 1:24.9
		0.25 12								
		·								
			4x6 =			$4x4 \equiv$		3x6 =	3x4 =	
	1 ^{3x4} =	$2^{3x6} =$	3	15		4		5	6	
ΙΙΙ		T1		12						T
0- <u>1-6</u>	W1 W2			14/					W2 W1	0
	B1		VV4	VV5		VV4	W3		B1	1-7-(
				B3		<u>}</u>				I I
	14	Ž							7	
	1.5x4	13 12	11	10		10		9 $3x4 =$	1.5x4	
		3x4 =	3x6 =	16		3x10 =		3x4		
		3x4								
					_					
	<u>1-4-4</u> <u>1-4-4</u>	<u>10-4</u> <u>5-4-4</u> -6-0 <u>3-6-0</u>	<u> </u>	9-3-6	8 -8	<u>9-4-4</u> 0-0-12	<u>12-10-4</u> 3-6-0	<u>13-4-4</u> 0-6-0	14-8-8	
Plate Off	sets (X,Y) [3:0-	3-12,0-2-0], [8:0-2-4,0-1-8],	[10:0-2-0,0-1-8], [13:0-2-4,0-1-	·8]						
	G (nsf)	SPACING- 2-0-0	CSI	DEFI	in	(loc)	l/defl l/d	PI ATES	GRIP	
TCLL	25.0	Plate Grip DOL 1.15	TC 0.29	Vert(LL)	-0.05	10-11	>999 240	MT20	220/195	
TCDL	7.0	Lumber DOL 1.15	BC 0.40	Vert(CT)	-0.08	10-11	>999 180			
BCLL	8.0	Code IRC2018/TPI2014	Matrix-SH	Horz(CT)	-0.00	8	n/a n/a	Weight: 72 lb	FT = 10%	
TOP CHO	RD 2x4 DE No	2		TOP CHOR	חי	Structure	al wood sheathing di	rectly applied or 4-	11-5 oc purlins e	vcent
BOT CH	ORD 2x4 DF No.	2 *Except*				end verti	icals.	cony applied of 4		лосрг
	B3: 2x6 DF	No.2	BOT C		OT CHORD Rigid c	Rigid cei	Rigid ceiling directly applied or 6-0-0 oc bracing.			
VVEDO	2X4 DF N0.	2				MiTek	recommends that Sta	abilizers and require	ed cross bracing l	be
						Installa	ition guide.		With Otabilizer	
REACTIO	ONS. (lb/size) 1	3=859/0-5-8 (min. 0-1-8), 8	3=860/0-5-8 (min. 0-1-8)							
	Max Horz 1 Max Uplift1	3=25(LC 7) 3=-314(LC 4), 8=-315(LC 5)							
			,							
TOP CH	6. (lb) - Max. Con ORD 2-3=-143	np./Max. Ten All forces 25	50 (lb) or less except when sho 5=_1/11//84	wn.						
BOT CH	ORD 2-13=-744	4/278, 11-16=-488/1429, 10	-16=-488/1429, 5-8=-737/275							
WEBS	2-11=-517	7/1504, 5-10=-509/1481								
NOTES-										
1) Unbala	anced roof live loa	ads have been considered f	or this design.							
2) Wind:	ASCE 7-16; Vult=	=110mph (3-second gust) V	asd=87mph; TCDL=4.2psf; BC	DL=3.0psf; h=25f	t; Cat.	II; Exp C	; Enclosed; MWFRS	20		
3) Provid	e adequate drain	age to prevent water pondir	iq.	ngni exposed, Lu	Innper	DOL-1.0	o plate grip DOL-1.	50		
4) Plates	checked for a plu	us or minus 15 degree rotat	on about its center.							
5) I his tr 6) * This	uss has been des truss has been de	signed for a 10.0 pst bottom esigned for a live load of 20	Chord live load nonconcurrent	with any other live	e loads	S. e 3-6-0 t:	all by 2-0-0 wide will	fit		
betwee	en the bottom cho	ord and any other members		areas where are	otarigi	0000				
7) Provid	e mechanical cor	nnection (by others) of truss	to bearing plate capable of wit	hstanding 100 lb ι	uplift a	t joint(s)	except (jt=lb) 13=314	4,		
o=315 8) This tr	uss is desianed ir	n accordance with the 2018	International Residential Code	sections R502.11	.1 and	d R802.10	0.2 and referenced			
standa	ard ANSI/TPI 1.						-			
9) Hange	er(s) or other conr	nection device(s) shall be pr	ovided sufficient to support cor	centrated load(s)	234 lk	o down ar	nd 117 lb up at 5-4-4	l, tion		
device	(s) is the response	sibility of others.			ne ues	sign/selec		.1011		
10) In the	LOAD CASE(S)	section, loads applied to th	e face of the truss are noted as	front (F) or back	(B).					
	ASE(S) Standard									
1) Dead	+ Roof Live (bala	nced): Lumber Increase=1.	5, Plate Increase=1.15							
Unifor	m Loads (plf)	2 14- 16 0 40- 40 7 0 4	6							
Conce	ntrated Loads (Ib)	U							

Vert: 11=-234(F) 10=-234(F) 16=-98(F)

Job		Truss	Truss Type	Qty	Ply BARCI	ELO HOMES/93RD	AVE			
2200345		H02	Hip Girder	1	1					
	s Inc. Ferndale M	/4 082/8		Run: 8 530 s Feb 23 2	Job R	eference (optiona	al) Industries Inc. Mo	n Mar 7 13:05:11 20	22 Page 1	
Louws Inds		6.4.4	11 4 4	ID:9Hio7SYbwwl	AuP1LBRngdvzd	JHT-Irp_FPDVa	(8QhBOAcKuzR	6pfQiAEi644a3Jm	14WzdH3s	
	3-2-6	2-10-14	5-3-0		<u>14-11-12</u> 3-7-8		<u>18-7-4</u> 3-7-8	<u>19-9-4</u> 1-2-0		
								0		
								Sca	le = 1:34.0	
		0.	25 12							
				4x10 —		1 5x4 II		4x10 —		
	3x6 =	3x4 =	3x6	4		5		4x5 = 4x5 = 7		
II.	1	Z	-T1 m				P		τI	i
2-14	W2	W3 W4			INTE		HTT L		6	4
		- 1941	B2	VV0		VV0			1-8-	÷
	1				B3				. 0-9-	Ē
1	15	14	$_{10} = \frac{13}{12}$						l ló l	
1	.5x4	3X0 —	$5x8 \equiv$	11	16	¹⁰ 17	18	9 8		
			UNU UNU	3x4		4x10 =		$7x8 \equiv 3x6 \parallel$		
	3-2-6	5-7-4	6-1-4 11-4-4	1	14-11-12		18-6-8	18,7-419-9-4		
Plate Offe	3-2-6	2-4-14 -1-12 0-1-81 [1·0-1-0 0-2-0	0-6-0 5-3-0 1 [6:0_6_0 0_2_0] [7:0_2_0 0_1_1'	21 [8·0_4_0_0_1_8] [0·0_3	3-7-8 8-8 0-4-81 [10:0-	2_4 0_2_0] [12.0	3-6-12	0-0-12 1-2-0		
		1 12,0 1 0], [4.0 4 0,0 2 0	, [0.0 0 0,0 2 0], [1.0 2 0,0 1 12	_j, <u>[0.0 + 0,0 + 0</u>], <u>[0.0 0</u>	, 0,0 4 0], [10.0		4 0,0 0 0]			
	(psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP		
TCDL	7.0	Lumber DOL 1.15	BC 0.91	Vert(CT) -0.13	10-11 >999	180	M120	220/195		
BCLL	0.0 *	Rep Stress Incr NC	WB 0.59	Horz(CT) 0.02	8 n/a	n/a				
BCDL	8.0	Code IRC2018/TPI2014	Matrix-SH				Weight: 98 I	lb FT = 10%		
LUMBER	-			BRACING-						
TOP CHC	ORD 2x4 DF No).2 > 2 *Excent*		TOP CHORD	Structural woo	d sheathing dire	ctly applied or 2	-11-12 oc purlins	, except	
BUTCHC	B1: 2x4 DF	= No.2		BOT CHORD	Rigid ceiling di	rectly applied or	6-0-0 oc bracin	g.		
WEBS	2x4 DF No	0.2		WEBS	1 Row at midp	t 4-12		-		
					MiTek recom	mends that Stab	ilizers and requ	ired cross bracing	g be	
					Installed duri	lig truss erection uide.	, in accordance	with Stabilizer		
REACTIC	NS. (lb/size)	15=70/Mechanical, 8=1719	/Mechanical, 13=1826/0-5-8 (n	nin. 0-1-15)	5]	
	Max Horz Max Unlift	13=43(LC 28) 15=-80(LC 29) 8=-529(LC	4) 13=-555(I C 4)							
	Max Grav	15=152(LC 16), 8=1719(LC	(LC 1), 13=1826(LC 1)							
FORCES	(lb) Max Ca	mp (Max Tan All faraas ()50 (lb) or loss avaant when abo							
TOP CHC	ORD 1-2=-249)/348, 2-3=-344/1099, 3-4=	136/479, 4-5=-3620/1127, 5-6=	-3620/1127,						
DOT OUC	6-7=-142	28/451, 7-8=-1852/570		450 44 40 4000/0450						
BUICHC	10-16=-3	1038/3452, 12-13=-338/1193, 1038/3452, 10-17=-440/14	27. 17-18=-440/1427. 9-18=-440	+52, 11-16=-1038/3452,)/1427						
WEBS	1-14=-35	57/204, 2-13=-959/283, 4-1	1=-204/793, 4-10=-98/277, 6-10	=-722/2343,						
	6-9=-950)/315, 7-9=-690/2248, 4-12	4072/1242							
NOTES-										
1) Unbala	nced roof live lo	bads have been considered	for this design.							
2) wind: A	vultable able end z	cone: cantilever left and right	t exposed : end vertical left and	l right exposed: Lumber	DOL=1.60 plate	e arip DOL=1.60				
3) Provide	e adequate drair	nage to prevent water pond	ing.			- <u>-</u>				
4) Plates	checked for a pl	lus or minus 15 degree rota	tion about its center.	with any other live load	•					
6) * This tru	russ has been de	designed for a live load of 2	0.0psf on the bottom chord in al	areas where a rectand	s. le 3-6-0 tall bv 2	2-0-0 wide will fit				
betwee	n the bottom ch	ord and any other member	s.		 					
7) Refer to	o girder(s) for tru	uss to truss connections.								
9) Provide	e mechanical co	nnection (by others) of trus	s to bearing plate capable of wit	thstanding 100 lb uplift a	at joint(s) 15 exc	ept (jt=lb) 8=529),			
13=555	5.	, , , , , , , , , , , , , , , , , , ,				, , , , , , , , , , , , , , , , , , ,				
10) This ti stand:	russ is designed ard ANSI/TPI 1	a in accordance with the 20	18 International Residential Coc	e sections R502.11.1 a	na R802.10.2 ai	na referenced				
11) Hange	er(s) or other co	nnection device(s) shall be	provided sufficient to support co	oncentrated load(s) 707	lb down and 24	8 lb up at 11-4-	4,			
337 lb and 1	down and 117 17 lb up at 18-6	Ib up at 13-5-0, 337 lb dov 5-8 on bottom chord. The c	n and 117 lb up at 15-5-0, and esign/selection of such connect	337 lb down and 117 lb tion device(s) is the resp	o up at 17-5-0, a consibility of othe	and 337 lb down ers.				

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	H02	Hip Girder	1	1	
					Job Reference (optional)
Louws Truss, Inc., Ferndale, WA 98248			s Feb 23 2	022 Print: 8	3.530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:05:11 2022 Page 2

Run: 8.530 s Feb 23 2022 Print: 8.530 s Feb 23 2022 Millek Industries, Inc. Mon Mar 7 13:05:11 2022 Page 2 ID:9Hio7SYbwwIMuP1LBRngdvzdJHT-Irp_FPDVaX8QhBOAcKuzR6pfQiAEi644a3Jm4WzdH3s

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-7=-64, 13-15=-16, 8-12=-16 Concentrated Loads (lb) Vert: 11=-707(F) 9=-337(F) 16=-337(F) 17=-337(F) 18=-337(F)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-12=-793/527, 4-12=-793/527, 4-5=-795/526, 5-6=-475/326

BOT CHORD 9-10=-128/295, 2-10=-499/444, 8-9=-713/1155, 7-8=-713/1155

WEBS 3-7=-398/217, 5-7=-532/838, 3-9=-1140/695

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Plates checked for a plus or minus 15 degree rotation about its center.

 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 6=143, 10=257.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Scale = 1:18.2

F	<u>1-4-4</u> 1-4-4 0-6-0	<u> </u>	7-5-0 0-0-12	<u>9-7-0 9-8-12</u> 2-2-0 0-1-12
Plate Offsets (X,Y	[2:0-2-4,0-1-8], [7:0-2-4,0-2-0]			
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. DEFL. in TC 0.40 Vert(LL) -0.01 BC 0.22 Vert(CT) -0.02 WB 0.32 Horz(CT) 0.01 Matrix-SH Horz(CT) 0.01	(loc) l/defl L/d 6-7 >999 240 6-7 >999 180 5 n/a n/a	PLATES GRIP MT20 220/195 Weight: 49 lb FT = 10%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x6 B1: WEBS 2x4	DF No.2 DF No.2 *Except* 2x4 DF No.2 DF No.2	BRACING- TOP CHORD S BOT CHORD F 6	Structural wood sheathing d end verticals. Rigid ceiling directly applied 5-0-0 oc bracing: 8-9.	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing, Except:
			MiTek recommends that S installed during truss erect Installation guide	tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=778/Mechanical, 8=611/0-5-8 (min. 0-1-8) Max Horz 8=41(LC 7) Max Uplift5=-264(LC 4), 8=-231(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 7-8=-62/254, 2-8=-299/135, 6-7=-278/853, 5-6=-278/853

WEBS 3-6=-130/450, 3-7=-759/273, 3-5=-943/321

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.4) Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=264, 8=231.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 459 lb down and 210 lb up at 7-4-4, and 176 lb down and 64 lb up at 9-7-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-64, 8-9=-16, 5-7=-16 Concentrated Loads (lb) Vert: 5=-176(B) 6=-459(B)

3x6 =

Plate Offsets (X,Y) [<u>1-4-4</u> <u>1-4-4</u> 6:0-2-12.0-1-8]		9-8-12 7-10-8		I
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.14 BC 0.34 WB 0.10 Matrix-SH	DEFL. in Vert(LL) -0.08 Vert(CT) -0.15 Horz(CT) -0.00	(loc) l/defl L/d 5-6 >999 240 5-6 >598 180 5 n/a n/a	PLATES GRIP MT20 220/195 Weight: 43 lb FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF W5: 2x4	No.2 No.2 No.2 *Except* 6 DF No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	irectly applied or 6-0-0 oc purlins, except or 6-0-0 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=282/Mechanical, 7=467/0-5-8 (min. 0-1-8) Max Horz 7=45(LC 11) Max Uplift5=-80(LC 12), 7=-171(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3x6 =

2-7=-209/255, 5-6=-384/372 3-6=-406/530, 3-5=-324/365 BOT CHORD

WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 7=171.
 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

1-4-4	1 _г 6 _т 0 0-1-12	<u>6-2-4</u> 4-8-4		<u>11-3-1</u> 5-1-8	2
Plate Offsets (X,Y)	[2:0-6-0,0-3-0]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.32 BC 0.36 WB 0.41 Matrix-SH	DEFL. in Vert(LL) 0.08 Vert(CT) -0.12 Horz(CT) 0.01	(loc) l/defl L/d 6 >999 240 6 >999 180 5 n/a n/a	PLATES GRIP MT20 220/195 Weight: 47 lb FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	irectly applied or 5-0-4 oc purlins, except or 5-11-2 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=387/Mechanical, 7=495/0-3-8 (min. 0-1-8) Max Horz 7=26(LC 11) Max Uplift5=-112(LC 9), 7=-166(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1301/1052

BOT CHORD 5-6=-1065/1301

WEBS 2-7=-401/434, 2-6=-1036/1211, 3-5=-1123/909

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.4) Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=112, 7=166.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

<u> 1-6-0</u> 	0 <u>3-4-4</u> 0 1-10-4			<u>11-3-12</u> 7-11-8			
Plate Offsets (X,Y) [[3:Edge,0-1-12], [4:0-1-8,0-2-0]			1110			
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.75 BC 0.42 WB 0.50 Matrix-SH	DEFL. in Vert(LL) -0.09 Vert(CT) -0.17 Horz(CT) 0.01	(loc) l/defl L/d 4-5 >999 240 4-5 >688 180 4 n/a n/a	PLATES GRIP MT20 220/195 Weight: 47 lb FT = 10%		
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, excep end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.			
	A 070/M church 0 500/0 0 0 /			MiTek recommends that S installed during truss erect Installation guide.	tabilizers and required cross bracing be ion, in accordance with Stabilizer		

REACTIONS. (lb/size) 4=379/Mechanical, 6=503/0-3-8 (min. 0-1-8) Max Horz 6=27(LC 9) Max Uplift4=-108(LC 9), 6=-171(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD

2-8=-363/323, 3-8=-363/323, 3-4=-260/292 5-6=-648/891, 4-5=-648/891 BOT CHORD

WEBS 2-6=-1059/815, 2-5=0/267, 2-4=-531/329

NOTES-

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

a) Provide adequate drainage to prevent water ponding.
4) Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=108, 6=171.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.

Job		Truss	Truss Type		Q	ty	Ply	BARCELO HOMES/9	3RD AVE	
2200345		H04B	Half Hip		1		1	lob Deference (tional	
Louws Tru	uss, Inc., Ferndale, W	A 98248			Run: 8.530 s	eb 23 2	022 Print:	3.530 s Feb 23 2022 M	iTek Industries, Inc. Mon M	lar 7 13:05:17 2022 Page 1
	<u> 1-6-0</u> −1-6-0		5-4-4 3-10-4		ID:9Hio7SY	bwwIM	uP1LBRi	ngdvzdJH1-7?BFW8 <u>11-3-12</u> 5-11-8	SIFANuaP6rKyb?NhN3i	m6Mo6rjyy?m4HAzdH3m
										Scale = 1:18.9
		0.25 12								
		1 5x4		4x10	=					3×4 —
	1 3x4 ≕	2		3				9		4
Ī	·	T1			_			T2		
φ			10/4		_			We		<u>e</u> W7
÷ ÷			VV4	W3				~~~		
				i i i	B1					
1 1	0			6						5
	1.5x4			1.5x4	П					5
		7 4x10 =								4x4 =
Plate Of	<u>⊢ 1-6-0</u> 1-6-0 fsets (X,Y) [4:Et	dqe.0-1-8]	<u>5-4-4</u> 3-10-4					<u>11-3-12</u> 5-11-8		I
	G (nsf)	SPACING- 2-0-0	CSI		DEEL	in	(loc)	l/defl l/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.4	2	Vert(LL)	-0.05	5-6	>999 240	MT20	220/195
BCLL	7.0 0.0 *	Rep Stress Incr YES	WB 0.4	5	Horz(CT)	-0.09	5-6 5	>999 180 n/a n/a		
BCDL	8.0	Code IRC2018/TPI2014	Matrix-SH		· · · ·				Weight: 47 lb	FT = 10%
LUMBEI TOP CH BOT CH WEBS	R- ORD 2x4 DF No. ORD 2x4 DF No. 2x4 DF No.	2 2 2			BRACING TOP CHO BOT CHO	- RD RD	Structur end ver Rigid ce MiTek installe	ral wood sheathing ticals. alling directly applie recommends that ed during truss erec	directly applied or 6-0- d or 6-0-0 oc bracing. Stabilizers and require ttion, in accordance wi	0 oc purlins, except d cross bracing be th Stabilizer
REACTI	ONS. (lb/size) 5 Max Horz 7 Max Uplift5	5=379/Mechanical, 7=503/0- 7=29(LC 11) 5=-106(LC 8), 7=-171(LC 8)	3-8 (min. 0-1-8)				Install			

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 6-7=-844/1074, 5-6=-844/1074 WEBS 3-7=-1004/836, 3-5=-858/650, 2-7=-248/270

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

()* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=106, 7=171.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1-6-0)	7-4-4			11-3-12
1-6-0)	5-10-4		·	3-11-8
Plate Offsets (X,Y) [7:0-2-4,0-2-12]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.40 BC 0.25 WB 0.28 Matrix-SH	DEFL. in Vert(LL) -0.05 Vert(CT) -0.08 Horz(CT) 0.01	(loc) I/defl L/d 6-7 >999 240 6-7 >999 180 5 n/a n/a	PLATES GRIP MT20 220/195 Weight: 47 lb FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD S BOT CHORD F	Structural wood sheathing d and verticals. Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	irectly applied or 5-4-15 oc purlins, except or 6-0-0 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=394/Mechanical, 7=487/0-3-8 (min. 0-1-8) Max Horz 7=30(LC 11) Max Uplift5=-111(LC 8), 7=-160(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1110/883

BOT CHORD 6-7=-390/452, 5-6=-897/1106

. . .

1-7=-205/351, 2-7=-575/613, 2-6=-531/658, 3-5=-1031/819 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- . .

3) Provide adequate drainage to prevent water ponding.4) Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=111, 7=160.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type		Qty	Ply	BARCELO HOMES	S/93RD AVE	
2200345	H04D	Half Hip Girder		1	1	Job Reference (optional)	
Louws Truss, Inc., Ferndale, W	A 98248		Run: 8.530 s ID:9Hi	Feb 23 20 7SYbww	022 Print: 8 IMuP1LB	.530 s Feb 23 2022 RngdvzdJHT-3O	MiTek Industries, Inc. Mon MIDx8JWi?9IfQ?j401rmo86	Mar 7 13:05:19 2022 Page 1 Awv9ansFPJFBM3zdH3k
1-6-0	1	5-1-6		8-8-	12		11-3-12	1
1-6-0	1	3-7-6		3-7	-6	1	2-7-0	1

Scale = 1:19.0

1-6-0 1-6-0 Plate Offsets (X,Y)) 5-1-6) 3-7-6 2:0-2-8,0-1-8], [4:0-3-8,0-2-0], [6:0-1	-12,0-1-8], [8:0-2-8,0-1-8]	6-3-0 1-1-10		8-8-12 2-5-12		<u>10-4-8</u> 1-7-12	11-3-12 0-11-4
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.28 BC 0.91 WB 0.34 Matrix-SH	DEFL. Vert(LL) - Vert(CT) - Horz(CT)	in (lc 0.09 7 0.13 7 0.02	oc) l/defl 7-8 >999 7-8 >867 6 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48	GRIP 220/195 Ib FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2	BRACING- TOP CHORI BOT CHORI	D Stri enc D Rig	Structural wood sheathing directly applied or 4-5-5 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.				
REACTIONS. (lb/size Max He Max U	e) 6=795/Mechanical, 9=694/0-3-8 (orz 9=31(LC 7) plift6=-264(LC 4), 9=-246(LC 4)	(min. 0-1-8)		M in In	<i>A</i> iTek recomm nstalled during nstallation guid	ends that Stal I truss erectior de.	bilizers and requ n, in accordance	ired cross bracing be with Stabilizer
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 8-12=	Comp./Max. Ten All forces 250 (lb) 1881/628, 3-4=-1525/508 -616/1877, 7-12=-616/1877, 7-13=-4) or less except when sho 91/1523, 6-13=-491/1523	wn.					

WEBS 2-9=-685/257, 2-8=-614/1792, 3-7=-364/132, 4-7=-98/360, 4-6=-1512/496

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.4) Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=264, 9=246.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 332 lb down and 152 lb up at 6-3-0, and 275 lb down and 114 lb up at 10-4-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-64, 6-10=-16 Concentrated Loads (lb) Vert: 12=-332(F) 13=-275(F)

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 13=155, 10=210, 9=159.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

doc	Truss	Truss Typ	be		QIY	Ply	BARCEL	LO HOMES/93RL	JAVE	
2200345	H05A	Half Hip Gi	irder		1	1	loh Bo	forance (antion		
Louws Truss, Inc., Fernda	le, WA 98248			Run: 8.530	s Feb 23 2	2022 Print: 8	8.530 s Fe	eb 23 2022 MiTek	Industries, Inc. Mon	Mar_7 13:05:21 2022 Page 1
160	2 10 / 7 1 1/		11 5 9	ID:9Hi	o7SYbww	/IMuP1LB	3Rngdvzo	JJHT-?mQmMo	qLmDcP0uj95BQ3	JrDEQJkfl2fFYtdklQxzdH3i
1-6-0	1-4-4 4-3-10)	4-3-10	3-1-1	2	3-	-1-12	3-0)-0	3-3-8
										o
										Scale = 1:40.7
0.25 12	2									
3×1 - 3×	6 - 4x10 =	1.5x4		4x10 =	1.5	x4		3x10 = 3x4 =	= 1.5x4	
1 2	3 W6	4		5	21	6		7 8	9	3x6 = 10
		- A	T	2		1		9	T3	-6.0
	EWALWAS BI		W6	₩8			₩8			-\\\8
		1	@		L=3	<u> </u>	02	· 🖸	<u>ــــــــــــــــــــــــــــــــــــ</u>	M
20	18	22 17	1602		1	4			12	25 11
1.5x4 3x4	= 3x6 =	4x12 =	1023	1.5x4	3x ⁻	10 =		1.5x4	3x10 =	3x4
			3x6 =							
160	2104 620	7 1 1 1	10.4.9 11	E 0 117	4	1-	700	19 10 0	20.0.0 22.1	10 0400
1-6-0	1-4-4 3-4-12	0-10-14	3-2-10 1-1	14-7- 1-0 3-1-1	2	3-	<u>-9-0</u> -1-12	1-1-0	<u>20-9-0</u> <u>22-1</u> 1-11-0 2-2	2-8 1-1-0
Plate Offsets (X,Y)	[3:0-5-8,0-2-0], [5:0-3-12,	,0-1-12], [7:0-2-1	2,0-1-8], [12:0-3-12,	,0-1-8], [17:0-4-0						
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL	1.15	IC 0.43	Vert(LL)	-0.10	17-18	>999	240	MT20	220/195
TCDL 7.0		1.15	BC 0.04	vent(C)) -0.16	17-10	2/01	160		
BCII 00*	Ren Stress Incr	NO	W/R 0/8	Horz(C1	C) _0 00	11	n/a	n/a		
BCLL 0.0 * BCDL 8.0	Rep Stress Incr Code IRC2018/TF	NO PI2014	WB 0.48 Matrix-SH	Horz(C1	r) -0.00	11	n/a	n/a	Weight: 100	lb FT = 10%
BCDL 0.0 * BCDL 8.0	Rep Stress Incr Code IRC2018/TF	NO PI2014	WB 0.48 Matrix-SH	Horz(C1	「) -0.00	11	n/a	n/a	Weight: 100	lb FT = 10%
BCLL 0.0 * BCDL 8.0	Rep Stress Incr Code IRC2018/TF	NO PI2014	WB 0.48 Matrix-SH	Horz(C1) -0.00	11	n/a	n/a	Weight: 100	lb FT = 10%
BCCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF	Rep Stress Incr Code IRC2018/TF	NO PI2014	WB 0.48 Matrix-SH	Horz(C1 BRACIN TOP CH	") -0.00 NG- IORD	11 Structur	n/a	n/a sheathing dire	Weight: 100 ectly applied or 4-	lb FT = 10% 2-11 oc purlins, except
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DE	Rep Stress Incr Code IRC2018/TF No.2 No.2	NO Pl2014	WB 0.48 Matrix-SH	Horz(C1 BRACII TOP CH) -0.00 NG- IORD	11 Structur end vert Rigid ce	n/a ral wood ticals.	n/a sheathing dire	Weight: 100	lb FT = 10% 2-11 oc purlins, except
BCDL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2	NO PI2014	WB 0.48 Matrix-SH	Horz(C1 BRACII TOP CH BOT CH	⁻) -0.00 NG- IORD IORD	11 Structur end ver Rigid ce	n/a ral wood ticals. eiling dire	n/a sheathing dire	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing	lb FT = 10% 2-11 oc purlins, except g.
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2	NO PI2014	WB 0.48 Matrix-SH	Horz(C1 BRACIN TOP CH BOT CH	⁻) -0.00 NG- IORD IORD	11 Structur end vert Rigid ce MiTek	n/a ral wood ticals. eiling dire	n/a sheathing dire ectly applied o nends that Stal	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2	NO PI2014	WB 0.48 Matrix-SH	BRACII TOP CH BOT CH	⁻) -0.00 NG- IORD IORD	11 Structur end vert Rigid ce MiTek installe Installa	n/a ral wood ticals. eiling dire recommed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 Dearings 0-3-8 except (jt=1	NO PI2014	WB 0.48 Matrix-SH	Horz(CT BRACII TOP CH BOT CH	⁻) -0.00 NG- IORD IORD	11 Structur end ver Rigid ce MiTek installe Installe	n/a ral wood ticals. ailing dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 Dearings 0-3-8 except (jt=1 lorz 19=28(LC 5)	NO PI2014	WB 0.48 Matrix-SH	Horz(CT BRACII TOP CF BOT CF	⁻) -0.00 NG- IORD IORD	11 Structur end veri Rigid ce MiTek installa	n/a ral wood ticals. eiling dire recommed during ation gui	n/a sheathing dire ectly applied o nends that Stai g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 Dearings 0-3-8 except (jt=) lorz 19=28(LC 5) plift All uplift 100 lb or les	NO PI2014 length) 11=0-1-1 ss at joint(s) exce	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7	Horz(CT BRACII TOP CH BOT CH 19=-228(LC 4),	⁻) -0.00 IG- IORD IORD 15=-443(11 Structur end ver Rigid ce MiTek installe Installe	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 Dearings 0-3-8 except (jt=1 lorz 19=28(LC 5) plift All uplift 100 lb or les 13=-297(LC 9) ray All reactions 250 lb of	NO PI2014 length) 11=0-1-1 ss at joint(s) exco	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 4	Horz(CT BRACII TOP CH BOT CH 19=-228(LC 4), 1) 19=639(LC 4)	^r) -0.00 NG- HORD HORD 15=-443(11 Structur end ver Rigid ce MiTek installe Installe	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 Incr 19=28(LC 5) Iplift All uplift 100 lb or les 13=-297(LC 9) Grav All reactions 250 lb or 13=888(LC 1)	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s)	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 4 except 11=604(LC	Horz(CT BRACII TOP CH BOT CH 19=-228(LC 4), 1), 19=639(LC 4	⁻) -0.00 NG- HORD HORD 15=-443(1), 15=13	11 Structur end vert Rigid ce MiTek installe Install LC 5), 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s)	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7 except 11=604(LC	Horz(CT BRACII TOP CH BOT CH 19=-228(LC 4), 1), 19=639(LC 4	⁻) -0.00 NG- HORD HORD 15=-443(1), 15=13	11 Structur end vert Rigid ce MiTek installe Install LC 5), 40(LC 1)	n/a ral wood ticals. illing dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) prces 250 (lb) or l	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), except 11=604(LC less except when sh	Horz(CT BRACII TOP CH BOT CH 19=-228(LC 4), 1), 19=639(LC 7 Iown.	⁻) -0.00 NG- HORD HORD 15=-443(1), 15=13	11 Structur end vert Rigid ce MiTek installe Installe LC 5), 40(LC 1)	n/a ral wood ticals. iling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=	Rep Stress Incr Code IRC2018/TF No.2 Start Stress (jt=1) Iorz 19=28(LC 5) Iplift All uplift 100 lb or less 13=-297(LC 9) Grav All reactions 250 lb (13=888(LC 1)) Comp./Max. Ten All for -943/310, 3-4=-1817/628 -027(426 - 2)	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 2009 627/2000 00	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7 except 11=604(LC less except when sh 5-21=-227/426, 6-2	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 7 100WN. 1=-227/426, - 290/425	r) -0.00 NG- HORD HORD 15=-443(1), 15=13	11 Structur end vert Rigid ce MiTek installe Installe LC 5), 40(LC 1)	n/a ral wood ticals. iling direc recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-2	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943 16-17=-637	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 4) 1), 19=639(LC 4) 100000. 12=227/426, 100000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=1200000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=120000. 12=1200000. 12=120000000. 12=1200000. 12=120000000000000000000000000000000000	 -0.00 NG- HORD HORD 15=-443(1), 15=13 215 	11 Structur end verl Rigid ce MiTek installe Installs LC 5), 40(LC 1)	n/a ral wood ticals. Piling direc recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1), 19=639(LC - 1), 19=639(LC - 1), 19=639(LC - 1), 15=23=-637/2	r) -0.00 NG- HORD HORD 15=-443(1), 15=13 215,	Structur end verl Rigid ce MiTek installa LC 5), 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o hends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19=	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7 except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1), 19=639(LC - 1), 19=639(LC - 1), 15=639(LC - 1), 15=23=-637/2 15, 15-23=-637/2 5-17=-845/2493,	 -0.00 NG- HORD HORD 15=-443(1), 15=13 215, 	Structur end verl Rigid ce MiTek installa LC 5), 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15=	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7 except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7-	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 7 nown. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128,	r) -0.00 NG- HORD HORD 15=-443(1), 15=13	Structur end veri Rigid ce MiTek installa LC 5), 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7-	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1), 19=639(LC - 1)	^r) -0.00 NG- HORD HORD 15=-443(1), 15=13 215,	11 Structur end veri Rigid ce MiTek installa LC 5), 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 C BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7-	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1000000000000000000000000000000000000	 -0.00 NG- HORD HORD HORD 15=-443(1), 15=13 215, 	11 Structur end veri Rigid ce MiTek installe Installa	n/a ral wood ticals. illing dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) prces 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7-	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 10000. 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128,	r) -0.00 NG- HORD HORD 15=-443(1), 15=13 215,	11 Structur end vert Rigid ce MiTek installe Installe LC 5), 40(LC 1)	n/a ral wood ticals. illing dire recomm ed durinş ation gui	n/a sheathing dire ectly applied o rends that Sta g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-16 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16:1	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) erces 250 (lb) or I 8-9=-857/296, 9- 943, 16-17=-637/ 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dear guet) Vasd=87m	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign.	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 4) 1), 19=639(LC 4) 10000 15, 15-23=-637/2 15, 15-23=-657/2 15, 15-23=-657/2 15, 15-23=-757/2 15, 15-257/2 15, 15-257/2	 -0.00 NG- IORD IORD 15=-443(1), 15=13 215, 225ft. Cat 	11 Structur end vert Rigid ce Installe Installe LC 5), 40(LC 1)	n/a ral wood ticals. illing dire recomm ed during ation gui	n/a sheathing dire ectly applied o rends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exces 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this de: gust) Vasd=87m hd right exposed	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B : end vertical left an	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 4) 1), 19=639(LC 4) 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	 -0.00 NG- IORD IORD I0RD <li< td=""><td>11 Structur end vert Rigid ce Installe Installe LC 5), 40(LC 1)</td><td>n/a ral wood ticals. illing dire recomm ed during ation gui</td><td>n/a sheathing dire ectly applied o rends that Stal g truss erection de.</td><td>Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance</td><td>lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer</td></li<>	11 Structur end vert Rigid ce Installe Installe LC 5), 40(LC 1)	n/a ral wood ticals. illing dire recomm ed during ation gui	n/a sheathing dire ectly applied o rends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et 3) Provide adequate c	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) erces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this de: gust) Vasd=87m nd right exposed ponding.	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 4) 1), 19=639(LC 4) 100000 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, 12=-374/1128, 12=-374/1128,	 -0.00 NG- HORD HORD HORD	11 Structur end verl Rigid ce MiTek installa LC 5), 40(LC 1)	n/a ral wood ticals. illing dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-16 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable er 3) Provide adequate of 4) Plates checked for	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dea gust) Vasd=87m nd right exposed r ponding.	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center.	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1), 19=639(LC - 1), 19=639(LC - 1), 15-23=-637/2 15, 15-23=-637/2 15, 15-23=-637/2 15, 17=-845/2493, 12=-374/1128, 12=-374/1128,	 -0.00 NG- HORD HORD 15=-443(1), 15=13 215, 215, 225ft; Catt ; Lumber 	11 Structur end veri Rigid ce MiTek installa LC 5), 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing directly applied o nends that Stal g truss erection de.	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable er 3) Provide adequate of 4) Plates checked for 5) This truss has beer	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 Comp./Status Status Comp./Max. Ten All fo 13=888(LC 1) Comp./Max. Ten All fo .943/310, 3-4=-1817/628, -227/426, 7-8=-857/296, 8 2=-323/943, 17-22=-323/9 5=-637/215 =-647/217, 2-18=-369/114 =-823/299, 5-14=-167/325 2=-228/673 /// e loads have been consist Vult=110mph (3-second and rainage to prevent water a plus or minus 15 degree n designed for a 10.0 psf	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this der gust) Vasd=87m nd right exposed r ponding. be rotation about bottom chord live	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - nown. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, CDL=3.0psf; h= id right exposed	 -0.00 NG- HORD HORD HORD 15=-443(1), 15=13 215, 25ft; Catt ; Lumber Hore load 	11 Structur end veri Rigid ce MiTek installa LC 5), 40(LC 1) 40(LC 1)	n/a ral wood ticals. eiling dire recomm ed during ation gui	n/a sheathing dire ectly applied o nends that Sta g truss erection de. sed; MWFRS grip DOL=1.60	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et 3) Provide adequate C 4) Plates checked for 5) This truss has beer 6) * This truss has beer	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this der gust) Vasd=87m nd right exposed r ponding. se rotation about bottom chord livy d of 20.0psf on ti	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - nown. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, CDL=3.0psf; h= id right exposed nt with any other all areas where a	 -0.00 NG- HORD HORD HORD 15=-443(1), 15=13 215, 225ft; Catt ; Lumber Live load a rectang 	11 Structur end veri Rigid ce MiTek installa LC 5), 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t	n/a ral wood ticals. eiling dire recomm ed during ation gui , , , C; Enclos 60 plate	n/a sheathing dire ectly applied o rends that Sta g truss erection de. sed; MWFRS grip DOL=1.60	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et 3) Provide adequate C 4) Plates checked for 5) This truss has beer 6) * This truss has beer between the bottom	Rep Stress Incr Code IRC2018/TF No.2 Start Start Interactions 250 lb of 13=888(LC 1) Comp./Max. Ten All fo .943/310, 3-4=-1817/628, -227/426, 7-8=-857/296, 8 -227/426, 7-8=-857/296, 8 -227/426, 7-8=-369/114 -823/299, 5-14=-167/328 2=-228/673 ve loads have been consist Vult=110mph (3-second g nd zone; cantilever left ar drainage to prevent water a plus or minus 15 degren n designed for a 10.0 psf en designed for a live loa n chord and any other met a conpacition (but data)	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this de: gust) Vasd=87m hd right exposed r ponding. be rotation about bottom chord livy d of 20.0psf on ti embers.	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1), 19=639(LC - 1)	 -0.00 NG- HORD HORD HORD 15=-443(1), 15=13 215, 225ft; Catt ; Lumber Live load a rectang 	11 Structur end veri Rigid ce MiTek installa LC 5), 40(LC 1) . II; Exp (DOL=1.6 s. le 3-6-0 t	n/a ral wood ticals. eiling dire recomm ed during ation gui , , C; Enclos 60 plate tall by 2-	n/a sheathing dire ectly applied o rends that Sta g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et 3) Provide adequate of 4) Plates checked for 5) This truss has beer 6) * This truss has beer between the bottom 7) Provide mechanica	Rep Stress Incr Code IRC2018/TF No.2 State Iorz 19=28(LC 5) plift All uplift 100 lb or let: 13=-297(LC 9) state state 13=888(LC 1) Comp./Max. Ten All fo -943/310, 3-4=-1817/628, -227/426, 7-8=-857/296, 8 -227/426, 7-8=-857/296, 8 -227/426, 7-8=-369/114 -823/299, 5-14=-167/324 2=-228/673 ve loads have been consii Vult=110mph (3-second g nd zone; cantilever left ar drainage to prevent water a plus or minus 15 degree n designed for a live loa n connection (by others) c a connection (by others)	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this de: gust) Vasd=87m hd right exposed ponding. ee rotation about bottom chord livy d of 20.0psf on ti embers. of truss to bearin of truss to bearin	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 100WN. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, 12=-374/1128, CDL=3.0psf; h= 1d right exposed ht with any other all areas where a	 -0.00 NG- IORD IORD IORD IDRD <li< td=""><td>11 Structur end veri Rigid ce MiTek installe Installe LC 5), 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t</td><td>n/a ral wood ticals. Biling dire recomm ed during ation gui , , C; Enclos 60 plate tall by 2-</td><td>n/a sheathing dire ectly applied o rends that Sta g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi</td><td>Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance</td><td>lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer</td></li<>	11 Structur end veri Rigid ce MiTek installe Installe LC 5), 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t	n/a ral wood ticals. Biling dire recomm ed during ation gui , , C; Enclos 60 plate tall by 2-	n/a sheathing dire ectly applied o rends that Sta g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable ef 3) Provide adequate c 4) Plates checked for 5) This truss has beer between the bottom 7) Provide mechanica 8) Provide mechanica 8) Provide mechanica 8) Provide mechanica	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2 Start Iorz 19=28(LC 5) plift All uplift 100 lb or let 13=-297(LC 9) grav All reactions 250 lb of 13=888(LC 1) Comp./Max. Ten All for .943/310, 3-4=-1817/628, .227/426, 7-8=-857/296, 8 22-323/943, 17-22=-323/9 5=-637/215 =-647/217, 2-18=-369/114 =823/299, 5-14=-167/325 2=-228/673 //e loads have been consii Vult=110mph (3-second f ind zone; cantilever left ar drainage to prevent water a plus or minus 15 degre in designed for a 10.0 psf en designed for a 10.0 psf 10 connection (by others) o an chord and any other me al connection (by others) o	NO PI2014 length) 11=0-1-1 ss at joint(s) exco or less at joint(s) excess 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dea gust) Vasd=87m hd right exposed ponding. the rotation about bottom chord live d of 20.0psf on the embers. of truss to bearin of truss to bearin of truss to bearin int 13.	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1000000000000000000000000000000000000	 -0.00 VG- HORD HORD HORD 15=-443(I), 15=13 215, 225ft; Cat ; Lumber live load a rectang lb uplift a 	11 Structur end veri Rigid ce Installe Installe LC 5), 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t at joint 11	n/a ral wood ticals. illing dire recomm ed during ation gui , , ; ; ; Enclos 60 plate tall by 2-	n/a sheathing dire ectly applied o rends that Stai g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	lb FT = 10% 2-11 oc purlins, except g. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable er 3) Provide adequate C 4) Plates checked for 5) This truss has beer 6) * This truss is desian 9) This truss is desian	Rep Stress Incr Code IRC2018/TF No.2 Iorz 19=28(LC 5) plift All uplift 100 lb or less 13=-297(LC 9) grav All reactions 250 lb or 13=888(LC 1) Comp./Max. Ten All for .943/310, 3-4=-1817/628, 227/426, 7-8=-857/296, 5 -227/426, 7-8=-857/296, 5 -227/426, 7-8=-857/296, 5 -227/426, 7-8=-857/296, 5 -227/217, 2-18=-369/114 -823/299, 5-14=-167/325 2=-228/673 ve loads have been consis Vult=110mph (3-second end zone; cantilever left and and zone; cantilever left and connection (by others) or al connection (by o	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) exca or less at joint(s) prces 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dea gust) Vasd=87m nd right exposed ponding. ee rotation about bottom chord live d of 20.0psf on ti embers. of truss to bearin of truss to bearin of truss to bearin of truss to bearin in 13. e 2018 Internatic	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7 except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w onal Residential Cod	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 100WN. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, CDL=3.0psf; h= 1d right exposed at with any other all areas where a /ithstanding 204 de sections R502	 -0.00 VG- IORD IORD IORD 15=-443(I), 15=13 215, 225ft; Cat ; Lumber live load a rectang Ib uplift a 2.11.1 an 	11 Structur end vert Rigid ce Installe Installe LC 5), 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t at joint 11 d R802.1	n/a ral wood ticals. illing dire recomm ed during ation gui , , ; ; Enclos 60 plate tall by 2- 1, 228 lb 10.2 and	n/a sheathing dire ectly applied o rends that Stal g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1 referenced	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	Ib FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable ef 3) Provide adequate c 4) Plates checked for 5) This truss has beer between the bottom 7) Provide mechanica 443 lb uplift at joint 9) This truss is design standard ANSI/TPI	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 Comp./Max. Ten All fo 13=888(LC 1) Comp./Max. Ten All fo 9943/310, 3-4=-1817/628, -227/426, 7-8=-857/296, 8 227/426, 7-8=-857/296, 8 227/426, 7-8=-857/296, 8 227/426, 7-8=-857/296, 8 2-323/943, 17-22=-323/9 5=-637/215 =-647/217, 2-18=-369/114 =-823/299, 5-14=-167/329 2=-228/673 Yult=110mph (3-second g nd zone; cantilever left ar drainage to prevent water a plus or minus 15 degree n designed for a 10.0 ps n designed for a 10.0 ps n chord and any other me al connection (by others) of 15 and 297 lb uplift at joi ed in accordance with the 1.	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dea gust) Vasd=87m nd right exposed r ponding. se rotation about bottom chord live d of 20.0psf on ti embers. of truss to bearin of truss to bearin int 13. e 2018 Internatic	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), 7 except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w onal Residential Cod	Horz(CT BRACII TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC - 1000000000000000000000000000000000000	 -0.00 VG- IORD IORD IORD 15=-443(1), 15=13 215, 215, 215, Ive load a rectang Ib uplift a 2.11.1 an 	11 Structur end vert Rigid ce Installe Installe LC 5), 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t at joint 11 d R802.1	n/a ral wood ticals. illing dire recomm ed durins ation gui , , ; ; Enclos 60 plate tall by 2- 1, 228 lb 10.2 and	n/a sheathing dire ectly applied o rends that Stai g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1 referenced	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	Ib FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable er 3) Provide adequate cd 4) Plates checked for 5) This truss has beer 6) * This truss has beer 6) * This truss has beer 6) * This truss is design standard ANSI/TPI 10) Hanger(s) or othe	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) exces 250 (lb) or I , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dea gust) Vasd=87m nd right exposed r ponding. se rotation about bottom chord live d of 20.0psf on ti embers. of truss to bearin of truss to bearin of truss to bearin int 13. e 2018 Internation	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w onal Residential Cod sufficient to support of	Horz(CT BRACIN TOP CF BOT CF 19=-228(LC 4), 1), 19=639(LC 4), 1), 19=639(LC 4), 10, 19=639(LC 4), 11, 19=639(LC 4), 12=-227/426, 12=-227/426, 12=-227/426, 12=-2374/1128, 12=-374/1128,	 -0.00 NG- IORD IORD IORD IS=-443(I), 15=13 215, 215, 215, Ive load a rectang Ib uplift a 2.11.1 an ad(s) 332 	11 Structur end veri Rigid ce MiTek Installe Installe LC 5), 40(LC 1) 40(LC 1) . II; Exp C DOL=1.6 s. le 3-6-0 t at joint 11 d R802.1 lb down	n/a ral wood ticals. illing dire recommed during ation gui , , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	n/a sheathing dire ectly applied o rends that Stai g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1 referenced i lb up at 6-3-0	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	Ib FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 14-15 WEBS 2-19= 5-15= 10-12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et all plates checked for 5) This truss has beer 6) * This truss is design 9 Provide mechanica 443 lb uplift at Joint 9) This truss is design standard ANSI/TPI 10) Hanger(s) or othe 410 lb down and The day	Rep Stress Incr Code IRC2018/TF No.2 Page Stress Incr Comp./Max. Ten All for .943/310, 3-4=-1817/628, .227/426, 7-8=-857/296, 8 22-323/943, 17-22-323/9 5=-637/215 =-637/215 =-637/215 =-647/217, 2-18=-369/114 =-823/299, 5-14=-167/325 2=-228/673 re loads have been consis Vult=110mph (3-second go and zong cantilever left and rainage to prevent water a plus or minus 15 degree in designed for a live loa in chord and any other me an chord and any other me an chord and any other me an chord and any other s) of 15 and 297 Ib uplift at joi 16 and cord-ance with the 1. <td>NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or I ,4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637/ 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dei gust) Vasd=87m nd right exposed r ponding. se rotation about bottom chord live d of 20.0psf on ti embers. of truss to bearin of truss to bearin</td> <td>WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w onal Residential Cod sufficient to support of the reconstriction</td> <td>Horz(CT BRACIN TOP CF BOT CF BOT CF 19=-228(LC 4), 1), 19=639(LC - nown. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, CDL=3.0psf; h= all areas where a concentrated loa -0, and 419 lb d of othera</td> <td> -0.00 NG- HORD HORD Hord</td> <td>11 Structur end verl Rigid ce MiTek installa LC 5), 40(LC 1) 40(LC 1) LC 5), 40(LC 1) at joint 11 d R802.1 lb down 166 lb up</td> <td>n/a ral wood ticals. eiling dire recomm ed during ation gui), C; Enclos 60 plate tall by 2- 1, 228 lb 10.2 and and 148 o at 22-1</td> <td>n/a sheathing dire ectly applied o rends that Stai g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1 referenced i lb up at 6-3-0 11-8 on bottom</td> <td>Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance</td> <td>Ib FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer</td>	NO PI2014 length) 11=0-1-1 ss at joint(s) exce or less at joint(s) exce or less at joint(s) prces 250 (lb) or I ,4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637/ 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dei gust) Vasd=87m nd right exposed r ponding. se rotation about bottom chord live d of 20.0psf on ti embers. of truss to bearin of truss to bearin	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w onal Residential Cod sufficient to support of the reconstriction	Horz(CT BRACIN TOP CF BOT CF BOT CF 19=-228(LC 4), 1), 19=639(LC - nown. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, CDL=3.0psf; h= all areas where a concentrated loa -0, and 419 lb d of othera	 -0.00 NG- HORD HORD Hord	11 Structur end verl Rigid ce MiTek installa LC 5), 40(LC 1) 40(LC 1) LC 5), 40(LC 1) at joint 11 d R802.1 lb down 166 lb up	n/a ral wood ticals. eiling dire recomm ed during ation gui), C; Enclos 60 plate tall by 2- 1, 228 lb 10.2 and and 148 o at 22-1	n/a sheathing dire ectly applied o rends that Stai g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1 referenced i lb up at 6-3-0 11-8 on bottom	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	Ib FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer
BCLL 0.0 * BCDL 8.0 LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF REACTIONS. All b (lb) - Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 6-7=- BOT CHORD 18-22 10 - 12 WEBS 2-19= 5-15= 10 - 12 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; (envelope) gable et (envelope) gable et 3) Provide adequate c 4) Plates checked for 5) This truss has beer 6) * This truss is design 3) Provide mechanica 443 lb uplift at joint 9) This truss is design standard ANSI/TPI 10) Hanger(s) or othe 410 lb down and 1 chord. The design	Rep Stress Incr Code IRC2018/TF No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	NO PI2014 length) 11=0-1-1 ss at joint(s) exca or less at joint(s) exca or less at joint(s) prces 250 (lb) or l , 4-5=-1817/628, 8-9=-857/296, 9- 943, 16-17=-637, 43, 3-18=-359/14 5, 7-14=-229/288 dered for this dea gust) Vasd=87m nd right exposed ponding. be rotation about bottom chord live d of 20.0psf on t embers. of truss to bearin of truss to bearin of truss to bearin of truss to bearin int 13. e 2018 Internation hall be provided s 410 lb down and bottom device(s) is ed to the face of	WB 0.48 Matrix-SH 2. ept 11=-204(LC 5), - except 11=604(LC less except when sh 5-21=-227/426, 6-2 10=-857/296, 10-11 /215, 16-23=-637/21 49, 3-17=-327/888, 5 3, 7-13=-487/186, 7- sign. ph; TCDL=4.2psf; B ; end vertical left an its center. e load nonconcurrer he bottom chord in a g plate at joint(s) 11 g plate capable of w onal Residential Cod sufficient to support of s the responsibility of the truss are noted	Horz(CT BRACIN TOP CF BOT CF BOT CF 19=-228(LC 4), 1), 19=639(LC - nown. 1=-227/426, =-280/105 15, 15-23=-637/2 5-17=-845/2493, 12=-374/1128, CDL=3.0psf; h= nd right exposed nt with any other all areas where a <i>c</i> <i>i</i> thstanding 204 le sections R502 concentrated loa -0, and 419 lb d of others. as front (E) or bar	 -0.00 NG- HORD HORD HORD HORD 15=-443(1), 15=13 215, 215, 225ft; Cat Lumber live load a rectang live load a rectang live load a rectang live load a rectang uplift a 2.11.1 an ad(s) 332 own and ack (B) 	11 Structur end verl Rigid ce MiTek installa LC 5), 40(LC 1) 40(LC 1) LC 5), 40(LC 1) LC 5), 40(LC 1) d R802.1 le 3-6-0 t at joint 11 d R802.1	n/a ral wood ticals. eiling dire recomm ed during ation gui), C; Enclos 60 plate tall by 2 1, 228 lb 10.2 and and 148 o at 22-1	n/a sheathing directly applied of rends that Stal g truss erection de. sed; MWFRS grip DOL=1.60 0-0 wide will fi uplift at joint 1 referenced t b up at 6-3-0 1-8 on bottom	Weight: 100 ectly applied or 4- r 6-0-0 oc bracing bilizers and requi n, in accordance	Ib FT = 10% 2-11 oc purlins, except 3. red cross bracing be with Stabilizer

LOAD CASE(S) Standard Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	H05A	Half Hip Girder	1	1	Job Reference (ontional)
Louws Truss, Inc., Ferndale, W/	A 98248	Run: 8.530 s ID:9Hio	Feb 23 2 7SYbwwl) 22 Print: 8 MuP1LBF	530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:05:22 2022 Page 2 RngdvzdJHT-Tz_8ZAMO_vXtWtjll8aYOQmb37n6Vi6HUrzOzdH3h

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-10=-64, 11-20=-16 Concentrated Loads (lb) Vert: 22=-332(B) 23=-410(B) 24=-410(B) 25=-419(B)

REACTIONS. (lb/size) 5=166/Mechanical, 7=306/0-3-8 (min. 0-1-8) Max Horz 7=29(LC 11) Max Uplift5=-42(LC 8), 7=-117(LC 8)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Plates checked for a plus or minus 15 degree rotation about its center.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 5 and 117 lb uplift at joint 7.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-7=-227/321

JOD	Iruss	Truss Type		Qty	Ply	BARCELO HOMES/9	3RD AVE		
2200345	H05C	Half Hip Girder		1	1	lob Reference (on	tional)		
Louws Truss, Inc., Ferndale, W	VA 98248	1	Run: 8.530 s	Feb 23 2	2022 Print:	8.530 s Feb 23 2022 Mi	Tek Industries, Inc. N	on Mar 7 13:	05:24 2022 Page 1
1-6-0	6-11-12	11-5-8	14-7-4	UUUUU	17	-9-0 2		24-0-8	
' 1-6-0 '	5-5-12	4-5-12	3-1-12	1	3-	1-12 ' 3	3-0-0	3-3-8	I
									Scale = 1:41.0
	0.25 12								
	0.20 12								
2×4 — 4x4 =		4x10 = 1.5	x4	3x8	8 =	1.5x4 3x	4 = 3x8 =		1.5x4
1 2	т. W4	3	4 T2		5 1	9 6	7 8 		9
	11	W6 VI	7	- -		₩8 ₩7	W9 W	W8	w@z
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	B1				В				
18 17	20	16 15 21 1		13	3		11	23	10
1.5x4    3x6 =	20	$4x4 = \frac{13}{3x4} = 3x1$	0 =	1.5>	(4	3x8 =	1.5x4	23	3x6 =
1-6-0	6-3-0 6 ₀ -	1-12 10-4-8 11-5-8	14-7-4		17	-9-0 18-10-0	20-9-0 22-	-11-8 24	-0-8
	4-9-0 0- 1-5-4.0-2-0]. [14:0-4-0.0-1-8]	<u>8-12 3-4-12 '1-1-0 '</u> [17:0-2-4.0-1-8]	3-1-12		3-1	1-12 ' 1-1-0 '	1-11-0 2-	2-8 1-	1-0 '
			DEEL	in	(100)	l/dofl l/d	DIATES		
TCLL 25.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL)	-0.11	16-17	>999 240	MT20	220/1	95
TCDL 7.0	Lumber DOL 1.15	BC 0.83	Vert(CT)	-0.17	16-17	>734 180			
BCDL 8.0	Code IRC2018/TPI2014	Matrix-SH		) 0.02	10	n/a n/a	Weight: 10	)1 lb FT :	= 10%
			PDACIN	6					
TOP CHORD 2x4 DF No	0.2		TOP CH	ORD	Structur	al wood sheathing	directly applied or	4-4-1 oc pı	urlins, except
BOT CHORD 2x4 DF No WEBS 2x4 DF No	0.2		вот сн		end ver	ticals.	d or 6-0-0 oc brac	ina	
			201.011	0112	MiTek	recommends that \$	Stabilizers and rec	uired cross	bracing be
					installe	ed during truss erec	tion, in accordanc	e with Stab	ilizer
REACTIONS. All bear	ings 0-3-8 except (jt=length	10=0-1-12.			Install	allon guide.			
(lb) - Max Horz	17=30(LC 5)	int(a) avaant 10- 107/LC 0) 17-	211/1 C 1) 1	1- 151(					
	12=-276(LC 5)	mi(s) except 10197(LC 9), 17-	-211(LC 4), 1	4401(	LC 4),				
Max Grav	All reactions 250 lb or less	at joint(s) except 10=604(LC 1),	17=605(LC 1	), 14=14	00(LC 1)	,			
	12-000(LO 22)								
FORCES. (lb) - Max. Co	mp./Max. Ten All forces 2	50 (lb) or less except when show	n.						
BOT CHORD 17-20=-1	177/560, 16-20=-177/560, 1	5-16=-561/1726, 15-21=-561/172	6, 14-21=-56 [.]	1/1726,					
13-14=-4	168/190, 12-13=-468/190, 12 270/797	2-22=-270/797, 11-22=-270/797,	11-23=-270/7	97,					
WEBS 1-17=-13	35/455, 2-17=-658/269, 2-16	=-393/1176, 3-16=-78/292, 3-14=	-2528/827,						
4-14=-33	36/142, 5-14=-327/141, 8-12	=-1065/341, 8-11=-79/309, 8-10=	-648/216						
NOTES-									
<ol> <li>Unbalanced roof live lo 2) Wind: ASCE 7-16: Vult</li> </ol>	bads have been considered t=110mph (3-second gust) \	for this design. /asd=87mph [,] TCDI =4 2psf [,] BCD	I =3 0nsf: h=:	25ft [.] Cat	II. Exp. (	C: Enclosed: MWEE	25		
(envelope) gable end z	zone; cantilever left and righ	exposed ; end vertical left and ri	ght exposed;	Lumber	DOL=1.0	60 plate grip DOL=1	1.60		
<ol> <li>3) Provide adequate drait</li> <li>4) Plates checked for a plates</li> </ol>	nage to prevent water pondi lus or minus 15 degree rota	ng. ion about its center							
5) This truss has been de	esigned for a 10.0 psf botton	chord live load nonconcurrent w	ith any other	live load	ls.				
<li>6) * This truss has been of between the bottom ch</li>	tesigned for a live load of 20	0.0pst on the bottom chord in all a	reas where a	rectang	le 3-6-0 1	tall by 2-0-0 wide wi	ill fit		
7) Provide mechanical co	nnection (by others) of trus	to bearing plate at joint(s) 10.							
<li>8) Provide mechanical co 451 lb uplift at joint 14</li>	nnection (by others) of truss and 276 lb uplift at joint 12	to bearing plate capable of withs	standing 197	ib uplift a	at joint 10	), 211 lb uplift at joir	nt 17,		
9) This truss is designed	in accordance with the 2018	International Residential Code s	ections R502	.11.1 an	d R802.1	0.2 and referenced			
standard ANSI/TPI 1. 10) Hanger(s) or other co	nnection device(s) shall be	provided sufficient to support con	centrated loa	d(s) 332	lb down	and 150 lb up at 6	-3-0.		
410 lb down and 164	Ib up at 10-4-8, and 410 lb	down and 164 lb up at 18-10-0,	and 419 lb do	wn and	156 lb up	at 22-11-8 on bot	tom		
chord. The design/se 11) In the LOAD CASE(S	election of such connection ( b) section, loads applied to the	levice(s) is the responsibility of of ie face of the truss are noted as f	ners. ront (F) or ba	ck (B).					

LOAD CASE(S) Standard

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	H05C	Half Hip Girder	1	1	
					Job Reference (optional)
Louws Truss, Inc., Ferndale, W/	A 98248	Run: 8.530	s Feb 23 2	022 Print: 8	530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:05:24 2022 Page 2
		ID:9H	io7SYbw\	vIMuP1LE	RngdvzdJHT-QL6v_rNeWXnalBtgtZd0TrswaxeUFxo_Zbzy1GzdH3f

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-9=-64, 10-18=-16 Concentrated Loads (lb) Vert: 20=-332(F) 21=-410(F) 22=-410(F) 23=-419(F)



1-6-0	0	8-11	1-12		10-9-12
Blate Offects (X X)	0 '	7-5-	-12		1-10-0
Flate Olisets (X, T)	[1.0-1-12,0-1-0], [7.0-2-4,0-2-12]				1
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.58 BC 0.35 WB 0.10 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.06 Vert(CT) -0.12 Horz(CT) 0.01	(loc) l/defl L/d 6-7 >999 240 6-7 >961 180 5 n/a n/a	<b>PLATES GRIP</b> MT20 220/195 Weight: 45 lb FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing c end verticals. Rigid ceiling directly applied	lirectly applied or 5-10-6 oc purlins, except
PEACTIONS (Ib/size	) 5-371/Mechanical 7-168/0 3.8	$(\min 0, 1, 8)$		MiTek recommends that S installed during truss erect Installation guide.	tabilizers and required cross bracing be ion, in accordance with Stabilizer

anical, 7=468/0-3-8 (min. 0-1-8) Max Horz 7=32(LC 11) Max Uplift5=-105(LC 8), 7=-155(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-343/212, 2-3=-766/601

BOT CHORD

6-7=-527/592, 5-6=-610/760 1-7=-338/515, 2-7=-651/744, 3-5=-862/673 WEBS

## NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.

 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 5 and 155 lb uplift at joint 7.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 6 and 119 lb uplift at joint 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 134 lb down and 72 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-3=-128, 4-6=-32 Concentrated Loads (lb) Vert: 5=-134(B)



# 4

## 1.5x4 ||

			3-3-3 3-3-3		
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	<b>CSI.</b> TC 0.13 BC 0.07 WB 0.00 Matrix P	<b>DEFL.</b> in Vert(LL) -0.00 Vert(CT) -0.01 Horz(CT) -0.01	(loc) l/defl L/d 3-4 >999 240 3-4 >999 180 2 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 0.1b         ET = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF	No.2 No.2	WallA	BRACING- TOP CHORD	Structural wood sheathing of end verticals.	directly applied or 3-3-3 oc purlins, except
WEBS 2x4 DF	No.2		BOT CHORD	Rigid ceiling directly applied MiTek recommends that S installed during truss erec Installation guide.	d or 10-0-0 oc bracing. Stabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 4=122/Mechanical, 2=91/Mechanical, 3=31/Mechanical (ID/SIZE) 4-122/MCGrannest, 2 5 ..... Max Horz 4=-17(LC 10) Max Uplift4=-36(LC 8), 2=-39(LC 12) Max Grav4=122(LC 1), 2=91(LC 1), 3=52(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 4 and 39 lb uplift at joint 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1.



	1-4-4	1-10-4	3-3-3	
	1-4-4	0-6-0	1-4-15	
Plate Offsets (X Y) [6:0-2-12 0-2-0]				

1 1410 0110010 (7.1,1.)	010 2 12,0 2 0]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.40 BC 0.07 WB 0.00 Matrix-P	<b>DEFL.</b> in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.03	(loc) l/defl L/d 6 >999 240 6 >999 180 3 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 13 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	lirectly applied or 3-3-3 oc purlins, except or 10-0-0 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 3=-76/Mechanical, 6=311/0-5-8 (min. 0-1-8), 4=10/Mechanical Max Horz 6=-17(LC 10) Max Uplift3=-76(LC 1), 6=-149(LC 8)

Max Grav3=42(LC 8), 6=311(LC 1), 4=22(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-6=-286/573

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 3 and 149 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



LOADING TCLL TCDL	(psf) 25.0 7.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	<b>CSI.</b> TC 0.14 BC 0.18	<b>DEFL.</b> Vert(LL) -0. Vert(CT) -0.	in (loc) 02 2-5 04 2-5	l/defl L/d >999 240 >999 180	PLATES GRIP MT20 220/195
BCLL BCDL	0.0 * 8.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-P	Horz(CT) -0.	00 4	n/a n/a	Weight: 24 lb FT = 10%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-7-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 DF No.2 BOT CHORD 2x4 DF No.2

SLIDER

Left 2x4 DF No.2 2-5-4

REACTIONS. (lb/size) 4=129/Mechanical, 2=293/0-5-8 (min. 0-1-8), 5=36/Mechanical (ID/SIZe) 4-129/INFOLIATION, 2 2000 C 2 Max Horz 2=76(LC 8) Max Uplift4=-75(LC 12), 2=-109(LC 8) Max Grav4=129(LC 1), 2=293(LC 1), 5=82(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-1-3, Interior(1) 2-1-3 to 4-6-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Plates checked for a plus or minus 15 degree rotation about its center.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 4 and 109 lb uplift at joint 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



## REACTIONS. (lb/size) 6=196/Mechanical, 5=203/Mechanical Max Horz 6=29(LC 11) Max Uplift6=-58(LC 8), 5=-59(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 6 and 59 lb uplift at joint 5.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



	<u>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−</u>	1-10-4 0-6-0	<u>5-4-4</u> 3-6-0	
Plate Offsets (X,Y) [8	8:0-2-4,0-1-8]			
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	<b>SPACING-</b> 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.13 BC 0.12 WB 0.04 Matrix-SH	DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.00         6-7         >999         240           Vert(CT)         -0.00         6-7         >999         180           Horz(CT)         0.00         6         n/a         n/a	PLATES MT20GRIP 220/195Weight: 24 lbFT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD Structural wood sheathing end verticals. BOT CHORD Rigid ceiling directly applie 6-0-0 oc bracing: 6-7.	directly applied or 5-4-4 oc purlins, except ed or 10-0-0 oc bracing, Except:
			MiTek recommends that installed during truss ere Installation guide.	Stabilizers and required cross bracing be ection, in accordance with Stabilizer

REACTIONS. (lb/size) 6=89/Mechanical, 8=318/0-5-8 (min. 0-1-8) Max Horz 8=42(LC 11) Max Uplift6=-26(LC 12), 8=-135(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD BOT CHORD 1-2=-274/112

2-8=-231/376

WEBS 1-8=-118/298

NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

a) Provide adequate drainage to prevent water ponding.
a) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 6 and 135 lb uplift at joint 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



	<u>1-4-4</u> 1-4-4	<u>1-10-4</u>   0-6-0	<u>5-3-3</u> 3-4-15	
Plate Offsets (X,Y) [8	3:0-2-4,0-1-8]			
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.13 BC 0.13 WB 0.04 Matrix-SH	DEFL.         in         (loc)         l/defl         L/d           Vert(LL)         -0.00         6-7         >999         240           Vert(CT)         -0.00         6-7         >999         180           Horz(CT)         0.00         6         n/a         n/a	
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD       Structural wood sheathing directly applied or 5-3-3 oc purlins, except end verticals.         BOT CHORD       Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 6-7.         MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.	ot

REACTIONS. (lb/size) 6=84/Mechanical, 8=315/0-5-8 (min. 0-1-8) Max Horz 8=42(LC 11) Max Uplift6=-25(LC 12), 8=-135(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD BOT CHORD 1-2=-276/113

- 2-8=-229/375
- WEBS 1-8=-120/301

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- a) Provide adequate drainage to prevent water ponding.
  3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.
   5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 6 and 135 lb uplift at joint 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



	70 0 0 40 0 0 01	6-0-12 6-0-12			6- <u>1-4</u> 7-3-3 0-0-81-1-15
Plate Offsets (X,Y)	[8:0-2-12,0-3-0]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.45 BC 0.35 WB 0.02 Matrix-P	<b>DEFL.</b> in Vert(LL) -0.07 Vert(CT) -0.13 Horz(CT) -0.00	(loc) l/defl L/d 8-9 >999 240 8-9 >559 180 6 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 33 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 6-7.	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing, Except:
				MiTek recommends that S installed during truss erec Installation guide.	Stabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 9=205/Mechanical, 6=-260/Mechanical, 8=615/0-5-8 (min. 0-1-8) Max Horz 9=43(LC 11) Max Uplift9=-52(LC 8), 6=-260(LC 1), 8=-234(LC 8)

Max Grav9=205(LC 1), 6=124(LC 8), 8=615(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-6=-371/265

BOT CHORD 2-8=-586/777

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 9, 260 lb uplift at joint 6 and 234 lb uplift at joint 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



F	<u>1-4-4</u> 1-4-4	1-10-4			7-4-4 5-6-0	
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.26 BC 0.18 WB 0.07 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.00	(loc) l/defl L/d 6-7 >999 240 6-7 >999 180 6 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 32 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	- No.2 - No.2 - No.2			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except d or 6-0-0 oc bracing.
					MiTek recommends that S installed during truss erec Installation guide.	Stabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 6=185/Mechanical, 8=381/0-5-8 (min. 0-1-8) Max Horz 8=43(LC 11) Max Uplift6=-54(LC 12), 8=-149(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-8=-302/422

NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 6 and 149 lb uplift at joint 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



	1-4-4 0-0-0		5-4-15	
Plate Offsets (X,Y)	[3:0-2-12,0-1-8]			
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI.         DEFL.         in           TC         0.24         Vert(LL)         -0.02           BC         0.17         Vert(CT)         -0.03           WB         0.03         Horz(CT)         -0.00           Matrix-SH         Horz(CT)         -0.00	(loc) l/defl L/d 6-7 >999 240 6-7 >999 180 6 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 32 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 8-9.	lirectly applied or 6-0-0 oc purlins, except I or 10-0-0 oc bracing, Except:
			MiTek recommends that S installed during truss erect Installation guide.	tabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 6=181/Mechanical, 8=378/0-5-8 (min. 0-1-8) Max Horz 8=43(LC 11) Max Uplift6=-53(LC 12), 8=-148(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-8=-278/376

## NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 6 and 148 lb uplift at joint 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



		6-0-12		6-jij-4	9-3-3
ſ		6-0-12		0-0-8	3-1-15
Plate Offsets (X,Y)	[1:0-1-8,0-2-0], [6:0-1-12,0-1-8], [8:0-	2-12,0-2-0]			
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.38 BC 0.24 WB 0.03 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.04 Vert(CT) -0.07 Horz(CT) 0.00	(loc) I/defl L/d 8-9 >999 240 8-9 >999 180 8 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 43 lb         FT = 10%
LUMBER- TOP CHORD 2x4 D BOT CHORD 2x4 D WEBS 2x4 D	F No.2 F No.2 F No.2 F No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 6-7.	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing, Except:
				MiTek recommends that S installed during truss erec Installation guide.	Stabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 9=217/Mechanical, 6=60/Mechanical, 8=442/0-5-8 (min. 0-1-8) Max Horz 9=45(LC 11) Max Uplift9=-60(LC 12), 6=-14(LC 8), 8=-134(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-8=-344/422

## NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 9, 14 lb uplift at joint 6 and 134 lb uplift at joint 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



## 0.25 12



3x6 =

0-9-0

	<u>1-4-4</u> <u>1-10-4</u> <u>1-4-4</u> <u>0-6-0</u>		9-3- 7-4-	3 15	
LOADING (psf)           TCLL         25.0           TCDL         7.0           BCLL         0.0 *           BCDL         8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.23 BC 0.28 WB 0.09 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.06 Vert(CT) -0.10 Horz(CT) -0.00	(loc) l/defl L/d 7-8 >999 240 7-8 >851 180 7 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 40 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 9-10.	irectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing, Except:
				MiTek recommends that S installed during truss erect Installation guide.	tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 7=269/Mechanical, 9=450/0-5-8 (min. 0-1-8) Max Horz 9=45(LC 11) Max Uplift7=-74(LC 8), 9=-167(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-205/253, 7-8=-336/327 3-8=-374/487, 3-7=-263/320 BOT CHORD

WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 7 and 167 lb uplift at joint 9.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



1-4-4	1-10-4		11-4-4		
1-4-4	0-6-0		9-6-0		1
Plate Offsets (X,Y) [5	:0-2-12,0-1-8], [6:0-2-0,0-1-12]				
LOADING (psf)           TCLL         25.0           TCDL         7.0           BCLL         0.0 *           BCDL         8.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.25 BC 0.55 WB 0.20 Matrix-SH	DEFL.         in           Vert(LL)         -0.19           Vert(CT)         -0.35           Horz(CT)         -0.01	(loc) I/defl L/d 5-6 >567 240 5-6 >315 180 5 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 49 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF N BOT CHORD 2x4 DF N WEBS 2x4 DF N	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	irectly applied or 6-0-0 oc purlins, except or 6-0-0 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=353/Mechanical, 7=532/0-5-8 (min. 0-1-8) Max Horz 7=46(LC 11) Max Uplift5=-101(LC 12), 7=-189(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-7=-237/271, 5-6=-581/582

3-6=-575/702, 3-5=-512/560 WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 5 and 189 lb uplift at joint 7.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



0.25 12



ł		5-7-4	6-1-4		14-11-12		19-9-4
Plate Off	sets (X,Y) [	<u>[1:0-1-12,0-2-0], [4:0-2-</u>	8,0-2-0], [8:0-2-	0,0-2-0], [9:0-2-12,0-2-0]	8-10-8		4-3-0
LOADING TCLL TCDL BCLL BCDL	G (psf) 25.0 7.0 0.0 * 8.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	<b>CSI.</b> TC 0.43 BC 0.48 WB 0.38 Matrix-SH	DEFL.         in           Vert(LL)         -0.14           Vert(CT)         -0.26           Horz(CT)         0.01	(loc) l/defl L/d 7-8 >999 240 7-8 >620 180 6 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 85 lb         FT = 10%
LUMBER TOP CHO BOT CHO WEBS	DRD 2x4 DF DRD 2x4 DF DRD 2x4 DF 2x4 DF	No.2 No.2 No.2	·		BRACING- TOP CHORD BOT CHORD	Structural wood sheath end verticals. Rigid ceiling directly ap	ing directly applied or 5-8-14 oc purlins, except plied or 7-9-10 oc bracing.
REACTIC	DNS. (Ib/size Max He Max Uj Max G	e) 10=182/Mechanical, orz 9=44(LC 11) plift10=-51(LC 8), 6=-10 rav10=188(LC 25), 6=5	6=507/Mechar 03(LC 13), 9=-23 07(LC 1), 9=86	nical, 9=869/0-5-8 (min. 39(LC 12) 9(LC 1)	0-1-8)	installed during truss Installation guide.	erection, in accordance with Stabilizer

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-1067/649

- BOT CHORD 8-9=-226/405, 2-9=-382/338, 7-8=-644/900, 6-7=-637/1064
- WEBS 1-9=-252/193, 4-6=-1056/603, 3-8=-1065/784, 3-7=-10/295

## NOTES-

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

- 4) Plates checked for a plus or minus 15 degree rotation about its center.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 10, 103 lb uplift at joint 6 and 239 lb uplift at joint 9.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



#### NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 292 lb uplift at joint 6 and 142 lb uplift at joint 4.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 415 lb down and 165 lb up at 0-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-128, 4-6=-32 Concentrated Loads (lb) Vert: 6=-415(B)



## 0.25 12



	<u>1-4-4</u> <u>1-10-4</u> <u>1-4-4</u> <u>0-6-0</u>		<u>9-8-12</u> 7-10-8	3	
Plate Offsets (X,Y) [	6:Edge,0-1-8]			, 	
LOADING (psf)           TCLL         25.0           TCDL         7.0           BCLL         0.0         *           BCDL         8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.16 BC 0.36 WB 0.11 Matrix-SH	DEFL.         in           Vert(LL)         -0.09           Vert(CT)         -0.16           Horz(CT)         -0.00	(loc) l/defl L/d 5-6 >998 240 5-6 >554 180 5 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 42 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	lirectly applied or 6-0-0 oc purlins, except or 6-0-0 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=285/Mechanical, 7=470/0-5-8 (min. 0-1-8) Max Horz 7=45(LC 11) Max Uplift5=-81(LC 12), 7=-172(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-7=-213/258, 5-6=-398/381 3-6=-411/542, 3-5=-342/387 BOT CHORD

WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 5 and 172 lb uplift at joint 7.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Installation guide

REACTIONS. (lb/size) 4=166/Mechanical, 5=306/0-3-8 (min. 0-1-8) Max Horz 5=29(LC 9) Max Uplift4=-46(LC 12), 5=-117(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-307/436

NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 4 and 117 lb uplift at joint 5.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



ŀ	<u>1-6-0</u> 1-6-0	)			6-3-0 4-9-0		6-3- 0-0-	-2			10-4-8 4-1-6		11-3-12
Plate Offs	ets (X,Y) [	2:0-1-12,0-1	-12], [3:0-2-′	12,0-1-8], [6:0	-1-12,0-1-12	2], [7:0-2-4,0-	-1-8]				-		
LOADING TCLL TCDL BCLL BCDL	(psf) 25.0 7.0 0.0 * 8.0	SPAC Plate Lumb Rep S Code	CING- Grip DOL er DOL Stress Incr IRC2018/TF	2-0-0 1.15 1.15 NO PI2014	<b>CSI.</b> TC BC WB Matrix	0.38 0.71 0.75 SH	<b>DEFL.</b> Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.17 0.02	(loc) 5-6 5-6 5	l/defl >999 >692 n/a	L/d 240 180 n/a	<b>PLATES</b> MT20 Weight: 47 lb	<b>GRIP</b> 220/195 FT = 10%
LUMBER- TOP CHORD 2x4 DF No.2 BOT CHORD 2x4 DF No.2 WEBS 2x4 DF No.2				BRACING TOP CHO BOT CHO	- RD RD	Structural wood sheathing directly applied or 3-11-12 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.			1-12 oc purlins, except				
									MiTe instal Instal	k recomr led durin llation qu	nends that Si g truss erecti ide.	abilizers and require	ed cross bracing be vith Stabilizer
REACTIO	NS. (Ib/size Max Ho Max Up	e) 5=816/Me orz 7=33(LC olift5=-273(L	echanical, 7= 24) C 8), 7=-233	=673/0-3-8 (n 8(LC 4)	nin. 0-1-8)								

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2221/745, 3-4=-273/98

6-7=-150/490, 6-9=-732/2217, 5-9=-732/2217 BOT CHORD

1-7=-89/317, 2-7=-729/280, 2-6=-595/1748, 3-5=-1974/661 WEBS

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 273 lb uplift at joint 5 and 233 lb uplift at joint 7.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 332 lb down and 152 lb up at 6-3-0, and 275 lb down and 115 lb up at 10-4-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-64, 5-8=-16 Concentrated Loads (lb) Vert: 6=-332(B) 9=-275(B)



	2-0-0			2-0-0				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 4-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.51 BC 0.41 WB 0.01 Matrix-P	<b>DEFL.</b> in Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) -0.06	n (loc) l/defl L/d 2 3-4 >999 240 4 3-4 >999 180 0 3 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 17 lb         FT = 10%			
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	2-0-0 oc purlins, exca (Switched from sheet Rigid ceiling directly a	ept end verticals ed: Spacing > 2-0-0). applied or 10-0-0 oc bracing.			

REACTIONS. (lb/size) 4=363/Mechanical, 3=363/Mechanical

Max Horz 4=-59(LC 4)

Max Uplift4=-121(LC 4), 3=-121(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 121 lb uplift at joint 4 and 121 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

9 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 134 lb down and 76 lb up at 2-0-0 on

bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-128, 3-4=-32 Concentrated Loads (lb) Vert: 5=-134(B)



REACTIONS. (lb/size) 6=297/Mechanical, 4=297/Mechanical Max Horz 6=-66(LC 8)

Max Uplift6=-93(LC 8), 4=-92(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-259/317, 1-2=-272/264, 2-3=-274/262, 3-4=-276/301

WEBS 1-5=-306/292, 2-5=-232/314, 3-5=-323/330

NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 6 and 92 lb uplift at joint 4.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



## 0.25 12



<u> </u>	0 0	<u>6-0-2</u> 4-6-2		<u> </u>	-9-12 9-10
Plate Offsets (X,Y) [	7:0-2-4,0-2-8]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.29 WB 0.33 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.05 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 6 >999 240 6 >999 180 5 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 45 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	lirectly applied or 5-9-13 oc purlins, except
				MiTek recommends that S installed during truss erect Installation guide.	tabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 5=374/Mechanical, 7=468/0-3-8 (min. 0-1-8) Max Horz 7=33(LC 9) Max Uplift5=-107(LC 12), 7=-154(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1096/904

BOT CHORD 6-7=-261/298, 5-6=-929/1093

2-7=-474/487, 2-6=-696/805, 3-5=-981/823 WEBS

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at joint 5 and 154 lb uplift at joint 7. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



1-6-	0	5-3-0 3-9-0		<u>9-3-12</u> 4-0-12	<u> </u>
Plate Offsets (X,Y) [	9:0-2-4,0-1-8]				
LOADING (psf)           TCLL         25.0           TCDL         7.0           BCLL         0.0 *           BCDL         8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.34 WB 0.20 Matrix-SH	DEFL.         in           Vert(LL)         -0.04           Vert(CT)         -0.07           Horz(CT)         0.01	(loc) l/defl L/d 7-8 >999 240 7-8 >999 180 6 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 46 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF W7: 2x0	No.2 No.2 No.2 *Except* 6 DF No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 9-10.	directly applied or 5-6-7 oc purlins,except d or 10-0-0 oc bracing,Except:
				MiTek recommends that S installed during truss erec Installation guide.	Stabilizers and required cross bracing be tion, in accordance with Stabilizer

REACTIONS. (lb/size) 6=809/Mechanical, 9=507/0-3-8 (min. 0-1-8) Max Horz 9=33(LC 7) Max Uplift6=-231(LC 8), 9=-166(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1235/354, 3-4=-975/284, 4-5=-980/288, 5-6=-784/226

BOT CHORD 8-9=-71/276, 7-8=-342/1232

WEBS 2-9=-504/181, 2-8=-281/974, 3-7=-265/87, 4-7=-442/160, 5-7=-300/1053

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 231 lb uplift at joint 6 and 166 lb uplift at joint 9. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-64, 4-5=-364, 6-10=-16

Job	Truss	Truss Type	Qty	Ply	BARCELO H	IOMES/93RD AVE			
2200345	T05B	Monopitch	4		1				
Louws Truss, Inc., Ferndale, W	A 98248		Run: 8.530 s Feb 2	3 2022 P	Job Refere	ence (optional) 3 2022 MiTek Industries, Inc. Mon	Mar 7 13:05:43 2022 Page 1		
1-6-0		5-3-0	ID:9Hio7SYbwwll	/uP1LB	3RngdvzdJHT-M3 9-1-0	l4zLcZ2MAuX6qKU2SUks8E 9-3-12	DBbEWBgxnx23SCgzdH3M 10-6-4 10-9-12		
1-6-0		3-9-0			3-10-0	0-2-12	1-2-8 0-3-8		
							Scale = 1:17.7		
			0.25 12						
			0.23 12						
						1.5x4	3x4 =		
⊥ <u>1</u> 3x4 =	2 4x4 =		$_{3}$ 4x4 =			4	5		
			T1				<u> </u>		
F=-									
	V <del>V3</del>	W4	W5		W6	W/			
			B1						
		L				ð	<u>لانا</u>		
10 9	) 🛱		8			7	6		
1.5x4			$4x4 \equiv$			4x10 =			
	5x6 =						3x6		
100		5.0.0			0.0.40		10.0.10		
1-6-0		<u> </u>			<u>9-3-12</u> 4-0-12		10-9-12		
Plate Offsets (X,Y) [5:0-	-1-12,0-1-8], [7:0-2-8,0-2-0],	[9:0-2-4,0-2-12]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loo	oc) I/defl L	/d PLATES	GRIP		
TCLL 25.0	Plate Grip DOL 1.15	TC 0.27	Vert(LL) 0.	05 7- 07 7	-8 >999 24	40 MT20	220/195		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.21	Horz(CT) 0.	07 7- 01	6 n/a n	/a			
BCDL 8.0	Code IRC2018/TPI2014	Matrix-SH	. ,			Weight: 46 ll	o FT = 10%		
LUMBER-			BRACING-						
TOP CHORD 2x4 DF No	.2		TOP CHORD	TOP CHORD Structural wood sheathing directly applied or 5-6-2 end verticals					
WEBS 2x4 DF No	.2 *Except*		BOT CHORD	Rigi	id ceiling directly	/ applied or 6-0-0 oc bracing	or 6-0-0 oc bracing.		
W7: 2x6 D	F No.2			Mi	iTek recommend	ds that Stabilizers and requi	red cross bracing be		
				lins Ins	stalled during tru	iss erection, in accordance	with Stabilizer		
REACTIONS. (lb/size)	6=582/Mechanical, 9=510/0	-3-8 (min. 0-1-8)			¥				
Max Horz Max Uplift	9=33(LC 9) 6=-166(LC 12), 9=-166(LC 8	3)							
		, - (  .)							
TOP CHORD 2-3=-125	0/1030, 3-4=-968/821, 4-5=	-967/826, 5-6=-560/478	/n.						
BOT CHORD 8-9=-241	/276, 7-8=-1058/1247		4004						
WEBS 2-9=-503	/498, 2-8=-850/991, 3-7=-28	88/236, 4-7=-449/444, 5-7=-919/	1084						
NOTES-	440								
(envelope) gable end z	one and C-C Corner(3) zon	asd=87mpn; TCDL=4.2pst; BCL e; cantilever left and right expos	ed ; end vertical left	at. II; E and rigi	=xp C; Enclosed ht exposed;C-C	for members			
and forces & MWFRS 1	or reactions shown; Lumber	DOL=1.60 plate grip DOL=1.60	)	0					
<ol> <li>Provide adequate drain</li> <li>Plates checked for a pl</li> </ol>	age to prevent water pondir us or minus 15 degree rotat	ng. Ion about its center.							
4) This truss has been de	signed for a 10.0 psf bottom	chord live load nonconcurrent	vith any other live lo	ads.					
5) * This truss has been d between the bottom ch	esigned for a live load of 20 ord and anv other members	.Upsf on the bottom chord in all	areas where a recta	ngle 3-6	6-0 tall by 2-0-0	wide will fit			
6) Refer to girder(s) for tru	uss to truss connections.								
<ol> <li>Provide mechanical co</li> <li>This truss is designed i</li> </ol>	nnection (by others) of truss n accordance with the 2018	to bearing plate capable of with International Residential Code	standing 166 lb upl sections R502 11 1	ft at join and R8i	nt 6 and 166 lb i 302 10 2 and refe	iplift at joint 9. erenced			
standard ANSI/TPI 1.						Sionood			
<ol> <li>Hanger(s) or other con top chord The design/</li> </ol>	nection device(s) shall be pr selection of such connection	ovided sufficient to support con device(s) is the responsibility c	centrated load(s) 27 of others	2 lb dov	wn and 212 lb u	p at 9-1-0 on			
1) Dead + Roof Live (bala	t nced): Lumber Increase=1 :	15. Plate Increase=1 15							
Uniform Loads (plf)									
Vert: 1-5=-64, 6 Concentrated Loads //P	5-10=-16 5)								
Vert: 4=-250	,								





<u> </u>	)	<u>6-3-2</u> 4-9-2		<u>+ 11-3-12</u> 5-0-10				
Plate Offsets (X,Y) [	7:0-2-4,0-2-8]							
LOADING (psf)           TCLL         25.0           TCDL         7.0           BCLL         0.0         *           BCDL         8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.28 BC 0.32 WB 0.41 Matrix-SH	<b>DEFL.</b> ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.07	n (loc) l/defl L/d 6 6 >999 240 9 6 >999 180 1 5 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 47 lb         FT = 10%			
LUMBER- TOP CHORD 2x4 DF BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	irectly applied or 5-6-1 oc purlins, except or 6-0-0 oc bracing.			
				MiTek recommends that S installed during truss erect Installation guide.	tabilizers and required cross bracing be ion, in accordance with Stabilizer			

REACTIONS. (lb/size) 5=394/Mechanical, 7=487/0-3-8 (min. 0-1-8) Max Horz 7=33(LC 11) Max Uplift5=-113(LC 12), 7=-160(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1212/984

BOT CHORD 6-7=-286/332, 5-6=-1008/1208

WEBS 2-7=-504/508, 2-6=-751/887, 3-5=-1085/895

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 Plates checked for a plus or minus 15 degree rotation about its center.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 5 and 160 lb uplift at joint 7. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



REACTIONS. (lb/size) 4=442/Mechanical, 3=442/Mechanical Max Horz 4=60(LC 7) Max Uplift4=-143(LC 4), 3=-133(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

- 1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS
- (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 4 and 133 lb uplift at joint 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 290 lb down and 126 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-128, 3-4=-32

Concentrated Loads (lb) Vert: 5=-290


BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins, except end verticals

(Switched from sheeted: Spacing > 2-0-0). Rigid ceiling directly applied or 10-0-0 oc bracing.

U	м	в	E	R-	

TOP CHORD 2x4 DF No.2 BOT CHORD 2x4 DF No.2 WEBS 2x4 DF No.2

REACTIONS. (lb/size) 4=442/Mechanical, 3=442/Mechanical Max Horz 4=60(LC 7) Max Uplift4=-143(LC 4), 3=-133(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 4 and 133 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 290 lb down and 126 lb up at 2-0-0 on

bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-128, 3-4=-32 Concentrated Loads (lb) Vert: 5=-290(B)



(envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 6 and 80 lb uplift at joint 4.

a) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



# REACTIONS. (lb/size) 6=445/Mechanical, 4=445/Mechanical Max Horz 6=77(LC 9) Max Uplift6=-134(LC 8), 4=-121(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-383/432, 1-2=-501/435

BOT CHORD 4-5=-467/501

WEBS 1-5=-477/521, 2-4=-581/514

NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections.

b) Relef to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 134 lb uplift at joint 6 and 121 lb uplift at joint 4.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Ty	be	C	Qty Ply	BARCELO HOMES/93F	RD AVE	
2200345	Т07	ROOF SP	ECIAL GIRDER	1	1	Job Reference (optic	onal)	
ouws Truss, Inc., Ferno	lale, WA 98248	I		Run: 8.530 s	Feb 23 2022 Print:	8.530 s Feb 23 2022 MiTe	ek Industries, Inc. Mon	Mar 7 13:05:48 2022 Page 1 Rvrxl cp.3sr2\W4KpDttzdU2
<b> </b>	2-8-15	5-2-5		7-7-12		10-1-4	12-10	
,	2-8-15	2-5-7	I	2-5-7	I	2-5-8	2-9-0	) '
								Scale = 1:21.7
						0.25	5 12	
							-	
<del>- 3x</del> 10 =	1	.5x4	3x10 =		4x10 =	3x1		3x4
		2	3				T2	
न् ज जिल्लान						10/5		i⊕i ₩7
	W2	W4 W3	W1	W3		VV5	VV0	
		<u> </u>	ř.	B1	<u> </u>			
X		10	9	10	8			$\geq$
∐ 11	42	x12 =	1.5x4	12	4x10 =			7
3x4								3x8 =
	2-8-15	5-2-5	6-4-4	. 7-7-1	2 .	12	-10-4	
	2-8-15	2-5-7		1-3-8	3	5	-2-8	
Plate Offsets (X,Y)	- [3:0-3-12,0-1-8], [5:0-4	+-8,0-1-8], [8:0-2-8,	<u>J-2-0], [10:0-5-4,0-1-12]</u>					
LOADING (psf)	SPACING-	4-0-0	<b>CSI.</b>	DEFL.	in (loc)	l/defl L/d	PLATES MT20	GRIP 220/195
TCDL 7.0	Lumber DOL	1.15	BC 0.83	Vert(CT)	-0.40 8-9	>378 180	W120	220/135
BCLL 0.0 * BCDI 8.0	Rep Stress Inc Code IBC2018	r NO	WB 0.60 Matrix-SH	Horz(CT)	0.05 7	n/a n/a	Weight: 54 II	b FT = 10%
.UMBER- OP CHORD 2x4 D	F No.2			TOP CHC	<b>3-</b> )RD 2-0-0 o	c purlins (2-2-9 max.)	. except end vertion	cals
3OT CHORD 2x4 D	0F 2400F 2.0E				(Switch	ed from sheeted: Spa	acing > 2-0-0).	
NEDS 214 L	/ NO.2			BOTOR		ening directly applied	01 0-4-14 00 brach	ig.
REACTIONS. (lb/si Max	ze) 11=1199/0-1-12( Horz 11=59(LC 5)	min. 0-1-8), 7=1194	/0-11-0 (min. 0-1-8)					
Max	Uplift11=-363(LC 4), 7=	-359(LC 8)						
FORCES. (lb) - Ma	x, Comp./Max, Ten A	ll forces 250 (lb) or	ess except when showr	۱.				
TOP CHORD 1-1	1=-1070/347, 1-2=-326	9/986, 2-3=-3269/98	86, 3-4=-5243/1577, 4-5	=-5246/1579	00			
VEBS 1-1	11=-78/265, 9-10=-163 )=-951/3123, 2-10=-28	2/5323, 9-12=-1632 2/139, 3-10=-2145/3	/5323, 8-12=-1632/5323 /00, 3-9=-88/335, 4-8=-3	3, 7-8=-993/31 397/166, 5-8=	30 -589/2220, 5-7=	-3080/1019		
NOTES								
1) Wind: ASCE 7-16	; Vult=110mph (3-seco	nd gust) Vasd=87m	ph; TCDL=4.2psf; BCDI	L=3.0psf; h=2	5ft; Cat. II; Exp	C; Enclosed; MWFRS	3	
(envelope) gable	end zone; cantilever lef	t and right exposed	; end vertical left and rig	ght exposed; I	umber DOL=1.	60 plate grip DOL=1.	60	
3) Plates checked for	or a plus or minus 15 de	gree rotation about	its center.					
<ol> <li>This truss has been been been been been been been bee</li></ol>	en designed for a 10.0	psf bottom chord liv	e load nonconcurrent wi	th any other li	ve loads.	tall by 2-0-0 wide will	fit	
between the botto	om chord and any other	members.			rectangle 5-0-0		int	
<ol> <li>δ) Provide mechanic</li> <li>7) Provide mechanic</li> </ol>	cal connection (by other	s) of truss to bearings) of truss to bearing	g plate at joint(s) 11.	tanding 363 IF	unlift at ioint 1	1 and 359 lb unlift at i	oint	
7.								
<ol> <li>I his truss is designation of the standard ANSI/TF</li> </ol>	gned in accordance with PI 1.	1 the 2018 Internation	onal Residential Code se	ections R502.	11.1 and R802.	10.2 and referenced		
9) Graphical purlin r	epresentation does not	depict the size or th	e orientation of the purl	in along the to	p and/or bottom	n chord.		
IU) Hanger(s) or oth bottom chord T	er connection device(s he design/selection of s	) snall be provided s such connection de	uπicient to support cond vice(s) is the responsibil	centrated load itv of others	(s) 383 lb down	and 183 lb up at 6-4	-4 on	
11) In the LOAD CA	SE(S) section, loads ap	oplied to the face of	the truss are noted as fr	ront (F) or bac	к (В).			
OAD CASE(S) Sta	Indard							
) Dead + Roof Live	(balanced): Lumber In	crease=1.15, Plate	ncrease=1.15					
Uniform Loads (p Vert: 1-6=	π) -128, 7-11=-32							
Concentrated Loa	ads (lb)							
Vert: 12=-	-383(F)							





REACTIONS. (lb/size) 5=322/0-3-8 (min. 0-1-8), 4=322/0-3-8 (min. 0-1-8) Max Horz 5=28(LC 11) Max Uplift5=-94(LC 8), 4=-94(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 4-5=-964/745

WEBS 2-5=-761/976, 2-4=-761/974

NOTES-

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 5 and 94 lb uplift at joint 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



BRACING-

TOP CHORD

BOT CHORD

end verticals.

Installation guide

Structural wood sheathing directly applied or 8-4-0 oc purlins, except

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 6-3-1 oc bracing.

WEBS

BOT CHORD

LUMBER-

WEBS

TOP CHORD 2x4 DF No.2

BOT CHORD 2x4 DF No.2

2x4 DF No.2

4-5=-964/745

 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

2-5=-761/976, 2-4=-761/974

3) Plates checked for a plus or minus 15 degree rotation about its center.

REACTIONS. (lb/size) 4=322/Mechanical, 5=322/0-3-8 (min. 0-1-8) Max Horz 5=-28(LC 8) Max Uplift4=-94(LC 9), 5=-94(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 4 and 94 lb uplift at joint 5.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 411 lb down and 164 lb up at 7-4-4 and 272 lb down and 105 lb up at 11-6-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-64, 6-10=-16 Concentrated Loads (lb) Vert: 11=-411(F) 12=-272(F)







<b>⊢</b> −−	5-10-12	11-6-0		17-1-4		23-0-0		
Plate Offsets (X,Y)	[2:0-2-13,0-1-3], [4:0-1-0,Edge], [5:0-2	2-0,0-2-8], [6:0-1-0,Edge]	, [8:0-2-13,0-1-3], [11:0	-4-0,0-3-0]		5-10-12		
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.39 BC 0.43 WB 0.32 Matrix-SH	DEFL. in Vert(LL) -0.08 Vert(CT) -0.14 Horz(CT) 0.06	(loc) l/defl 11-12 >999 11-12 >999 8 n/a	L/d 240 180 n/a	<b>PLATES</b> MT20 Weight: 116 lb	<b>GRIP</b> 220/195 FT = 10%	
LUMBER-         TOP CHORD 2x4 DF No.2 *Except*         T1: 2x6 DF No.2         BOT CHORD 2x4 DF No.2         BOT CHORD 2x4 DF No.2         SLIDER         Left 2x4 DF No.2 3-0-9, Right 2x4 DF No.2 3-0-9         REACTIONS. (lb/size)         2=1016/0-5-8 (min. 0-1-8), 8=1016/0-5-8 (min. 0-1-8) Max Horz 2=-71(LC 17)         Max Unlift?=-288(L C. 9)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         FOP CHORD       2-13=-1876/531, 3-13=-1813/539, 3-4=-1815/549, 4-14=-1366/429, 5-14=-1305/439, 5-15=-1305/439, 6-15=-1366/429, 6-7=-1815/549, 7-16=-1813/539, 8-16=-1875/531         SOT CHORD       2-12=-460/1684, 11-12=-458/1689, 10-11=-451/1689, 8-10=-454/1684         NEBS       5-11=-106/483, 6-11=-556/212, 4-11=-556/211								

1) Unbalanced roof live loads have been considered for this design.

a) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-1-3, Interior(1) 2-1-3 to 11-6-0, Exterior(2R) 11-6-0 to 15-1-3, Interior(1) 15-1-3 to 24-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Plates checked for a plus or minus 15 degree rotation about its center.
4) This tures has been designed for a 10.0 per battom cherd live load percencyurrent with any other live loads.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 288 lb uplift at joint 2 and 288 lb uplift at joint 8. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Scale = 1:39.3



	5-10-12	11-6-0		17-1-4	23-0-0			
	5-10-12	5-7-4	I	5-7-4	5-10-12			
Plate Offsets ()	(,Y) [2:0-2-13,0-1-3], [4:0-1-0,Edge], [5:0-2	2-0,0-2-8], [8:0-6-3,Edge],	[10:0-4-0,0-3-0]					
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 BCDL 8.0	SPACING-         2-0-0           Plate Grip DOL         1.15           Lumber DOL         1.15           *         Rep Stress Incr         YES           Code IRC2018/TPI2014         Code IRC2018/TPI2014	CSI. TC 0.43 BC 0.46 WB 0.31 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.09 Vert(CT) -0.15 Horz(CT) 0.05	(loc) l/defl L/d 9-10 >999 240 9-10 >999 180 8 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 111 lb         FT = 10%			
LUMBER-       BRACING-         TOP CHORD       2x4 DF No.2 *Except*       TOP CHORD       Structural wood sheathing directly applied or 4-1-2 oc purlins.         T1: 2x6 DF No.2       BOT CHORD       2x4 DF No.2       BOT CHORD       BOT CHORD       Structural wood sheathing directly applied or 9-2-7 oc bracing.         BOT CHORD       2x4 DF No.2       Structural wood sheathing directly applied or 9-2-7 oc bracing.       MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer         SLIDER       Left 2x4 DF No.2 3-0-9, Right 2x6 DF No.2 3-1-3       Image: Commendia that Stabilizer       Image: Commendia that Stabilizer								
REACTIONS.	REACTIONS. (lb/size) 8=917/0-5-8 (min. 0-1-8), 2=1019/0-5-8 (min. 0-1-8) Max Horz 2=72(LC 16) Max Uplift8=-224(LC 9), 2=-289(LC 8)							
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.         TOP CHORD       2-12=-1883/540, 3-12=-1820/548, 3-4=-1822/558, 4-13=-1376/433, 5-13=-1316/442, 5-14=-1313/449, 6-14=-1367/439, 6-15=-1755/538, 7-15=-1771/530, 7-8=-1850/524         BOT CHORD       2-11=-470/1690, 10-11=-467/1695, 9-10=-437/1642, 8-9=-437/1642         WEBS       5-10=-109/471, 6-10=-510/202, 4-10=-553/211								
NOTES.	, ,							

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-1-3, Interior(1) 2-1-3 to 11-6-0, Exterior(2R) 11-6-0 to 15-1-3, Interior(1) 15-1-3 to 23-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Plates checked for a plus or minus 15 degree rotation about its center.
 4) This tures has been designed for a 10.0 per battom cherd live load percenciurent with any other live loads.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 224 lb uplift at joint 8 and 289 lb uplift at joint 2. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



Scale = 1:39.1



⊢	4-0-5	<u>4-7-14 7-9</u>	3	<u>11-6-0</u> 3-8-13		15-2-13		18-11-	-11	23-0-0
Plate Offsets (X,Y)	[ <u>3:0-1-0,0-1-12], [6:0-1-</u>	·12,0-1-8], [9:0-0-	 0,0-3-3], [11:0-3-	0,0-3-12], [1	2:0-4-0,0-	4-8]		0-0-1	0	+-0-0
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 NO TPI2014	<b>CSI.</b> TC 0.89 BC 0.56 WB 0.39 Matrix-SH		<b>DEFL.</b> Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.16 11-12 -0.25 11-12 0.06 9	l/defl >999 >999 n/a	L/d 240 180 n/a	<b>PLATES</b> MT20 Weight: 260 lb	<b>GRIP</b> 220/195 • FT = 10%
LUMBER- TOP CHORD 2x6 DF T3: 2x- BOT CHORD 2x6 DF WEBS 2x4 DF SLIDER Right 2	- No.2 *Except* 4 DF 2400F 2.0E, T2: 2 - 2400F 2.0E - No.2 2x4 DF No.2 2-0-12	x4 DF No.2			BRACING TOP CHO BOT CHO	- RD Structu RD Rigid c	ural wood ceiling dir	d sheathing dir ectly applied o	rectly applied or 4-5 or 10-0-0 oc bracing	-11 oc purlins.
REACTIONS. (Ib/size) 9=4441/0-5-8 (min. 0-2-6), 2=3562/0-5-8 (min. 0-1-14) Max Horz 2=74(LC 33) Max Upliff9=-1152(LC 5), 2=-995(LC 4)										
FORCES. (lb) - Max.           TOP CHORD         2-3=-           7-8=-           BOT CHORD         2-14           13-11           19-20           10-22           WEBS         5-12-           4-12-	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-7711/2036, 3-4=-7992/2096, 4-5=-6729/1766, 5-6=-6737/1762, 6-7=-8677/2258, 7-8=-9195/2395, 8-9=-9217/2380         BOT CHORD       2-14=-1861/6953, 14-15=-1865/6968, 15-16=-1865/6968, 13-16=-1865/6968, 13-17=-1941/7531, 17-18=-1941/7531, 12-18=-1941/7531, 12-19=-2061/8244, 19-20=-2061/8244, 11-20=-2061/8244, 11-21=-2170/8503, 21-22=-2170/8503, 10-23=-2170/8503, 9-23=-2170/8503         WEBS       5-12=-1036/4018, 6-12=-2469/690, 6-11=-436/1768, 7-11=-359/128, 7-10=-201/884, 4-12=-1559/484, 4-13=-314/1199, 3-13=-187/716									
<ul> <li>NOTES-</li> <li>1) 2-ply truss to be controp chords connect Bottom chords connected a</li> <li>2) All loads are considiated connections have b</li> <li>3) Unbalanced roof link</li> <li>4) Wind: ASCE 7-16; (envelope) gable e</li> <li>5) Plates checked for</li> <li>6) This truss has been</li> <li>7) * This truss has been</li> <li>7) * This truss has been between the bottor</li> <li>8) Provide mechanication</li> <li>2) This truss is design standard ANSI/TPI</li> <li>10) Hanger(s) or othe and the down and the down</li></ul>	nnected together with 1 sted as follows: 2x6 - 2 nected as follows: 2x6 - 2 s follows: 2x4 - 1 row at dered equally applied to been provided to distribi- ve loads have been con Vult=110mph (3-secon- nd zone; cantilever left a plus or minus 15 deg n designed for a 10.0 p en designed for a live lo n chord and any other r al connection (by others ned in accordance with 1. r connection device(s)	10d (0.131"x3") n rows staggered a - 2 rows staggered to -9-0 oc. all plies, except ute only loads no sidered for this d d gust) Vasd=87r and right expose- ree rotation abou sf bottom chord li bad of 20.0psf on nembers. ) of truss to beari the 2018 Internat	ails as follows: t 0-9-0 oc, 2x4 d at 0-9-0 oc. if noted as front ( ted as (F) or (B), esign. nph; TCDL=4.2ps d; end vertical le' t its center. ve load nonconct the bottom chorc ng plate capable ional Residential sufficient to supp	1 row at 0-7- (F) or back ( unless other sf; BCDL=3. ft and right e urrent with a d in all areas of withstance Code section	-0 oc. B) face in f rwise indic Opsf; h=25 exposed; L ny other lin s where a r ding 1152 l ons R502.1 rated load(	he LOAD CAS ated. ft; Cat. II; Exp umber DOL=1 re loads. ectangle 3-6-0 o uplift at joint 1.1 and R802. s) 115 lb dowr	SE(S) see C; Enclo .60 plate 1 tall by 2 9 and 99 .10.2 and n and 87	ction. Ply to pl osed; MWFRS ogrip DOL=1.6 -0-0 wide will 05 lb uplift at jo d referenced lb up at 4-7-1	y 50 fit bint	

Ib up at 12-7-14, 744 lb down and 204 lb up at 14-7-14, 744 lb down and 204 lb up at 16-7-14, and 744 lb down and 204 lb up at 18-7-14, and 744 lb down and 204 lb up at 20-7-14 on bottom chord. The design/selection of such connection device(s) is the Continued of page 2 others.

ſ	Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
	2200345	T08B	Common Girder	1		Job Reference (optional)
	Louws Truss, Inc., Ferndale, W	A 98248	Run: 8.530 ID:9Hio	s Feb 23 2 7SYbwwl	022 Print MuP1LE	8.530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:05:55 2022 Page 2 RngdvzdJHT-0JUdUSI5D2hBzyleBZgIDOe7TRHw?27Yhvz5dzzdH3A

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-5=-64, 5-9=-64, 2-9=-16 Concentrated Loads (lb) Vert: 15=-115(B) 16=-744(B) 17=-744(B) 19=-744(B) 20=-744(B) 21=-744(B) 22=-744(B) 23=-744(B) 23=-



Scale = 1:37.7



Plate Offsets ()	X Y) [2	P·0-4-1 Edge] [4·0-1-(	4-8-8 4-8-8	0 Edge] [8:0-4	9- 4- 4-1 Edge] [1	-1-8 -5-0 11:0-4-0 0-3-01		1	3-6-8 4-5-0		18-3-0 4-8-8	I
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 BCDL 8.0	) 0 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0 BC 0 WB 0 Matrix-S	).41 ).38 ).14 SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.03	(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 100 lb	<b>GRIP</b> 220/195 FT = 10%
LUMBER-       BRACING-         TOP CHORD 2x4 DF No.2 *Except*       TOP CHORD         T1,T3: 2x6 DF No.2       TOP CHORD         BOT CHORD 2x4 DF No.2       Structural wood sheathing directly applied or 6-0-0 oc purlins.         BOT CHORD 2x4 DF No.2       BOT CHORD 2x4 DF No.2         WEBS       2x4 DF No.2         SLIDER       Left 2x4 DF No.2 2-5-1, Right 2x4 DF No.2 2-5-1									0 oc purlins. d cross bracing be h Stabilizer			
REACTIONS.	REACTIONS. (lb/size) 2=1010/0-5-8 (min. 0-1-8), 8=802/0-5-8 (min. 0-1-8) Max Horz 2=86(LC 8) Max Uplift2=-362(LC 8), 8=-237(LC 9)											
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-1261/380, 3-4=-1183/391, 4-14=-981/325, 5-14=-936/336, 5-15=-936/347, 6-15=-982/336, 6-7=-1292/402, 7-8=-1358/388         BOT CHORD       2-12=-312/1061, 11-12=-309/1064, 10-11=-314/1193, 8-10=-317/1189         WEBS       5-11=-65/325, 6-11=-390/161, 4-11=-254/106												

## NOTES-

1) Unbalanced roof live loads have been considered for this design.

Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -4-0-0 to -0-4-13, Interior(1) -0-4-13 to 9-1-8, Exterior(2R) 9-1-8 to 12-8-11, Interior(1) 12-8-11 to 19-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Plates checked for a plus or minus 15 degree rotation about its center.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 362 lb uplift at joint 2 and 237 lb uplift at joint 8. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.





			4-8-8			9-1-8					17-11-8	
		F	4-8-8			4-5-0					8-10-0	
Plate Offsets ()	X,Y) [2:0	)-4-1,Edge], [4:	0-1-0,Edge], [5:0-2-	0,0-2-4], [8:0	0-7-6,Edge],	[9:0-4-0,0-3-0]						
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 BCDL 8.0	) ) ) * )	SPACING- Plate Grip Lumber DC Rep Stress Code IRC2	2-0-0 DOL 1.15 DL 1.15 Incr YES 2018/TPI2014	<b>CSI.</b> TC BC WB Matri	0.41 0.53 0.10 x-SH	DEFL. Vert(LL Vert(C1 Horz(C	in -0.10 ) -0.18 ) 0.03	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 91 lb	<b>GRIP</b> 220/195 FT = 10%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2 SLIDER L	2x4 DF Nc T1: 2x6 DF 2x4 DF Nc 2x4 DF Nc 2x4 DF Nc Left 2x4 D	0.2 *Except* F No.2 0.2 0.2 F No.2 2-5-1, F	Right 2x6 DF No.2 2	-4-12		BRACI TOP CI BOT CI	<b>IG-</b> Iord Iord	Structo Rigid o MiTe insta Insta	ural woo ceiling di k recom lled durii llation gi	d sheathing rectly applie mends that s ng truss erec uide.	directly applied or 5-3 d or 10-0-0 oc bracing Stabilizers and require stion, in accordance w	3-6 oc purlins. 3. ed cross bracing be vith Stabilizer
REACTIONS.	(lb/size) Max Horz Max Uplift	8=690/Mechar 2=87(LC 8) t8=-169(LC 9),	nical, 2=1003/0-5-8 2=-361(LC 8)	(min. 0-1-8)	)							
FORCES. (lb) TOP CHORD BOT CHORD WEBS	- Max. Co 2-3=-123 6-13=-95 2-10=-32 5-9=-58/	omp./Max. Ten. 39/391, 3-4=-1 ⁻ 56/337, 6-14=- ⁻ 21/1041, 9-10= /332, 6-9=-273/	- All forces 250 (lb) 161/401, 4-12=-971/ 1133/425, 7-14=-110 -318/1043, 8-9=-32- 157	or less exce /327, 5-12=- 63/419, 7-8= 4/1067	ept when sho 926/337, 5-1 1229/419	own. 13=-924/346,						

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -4-0-0 to -0-4-13, Interior(1) -0-4-13 to 9-1-8, Exterior(2R) 9-1-8 to 12-8-11, Interior(1) 12-8-11 to 17-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Plates checked for a plus or minus 15 degree rotation about its center.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a any other members.

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 169 lb uplift at joint 8 and 361 lb uplift at joint 2.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



9

5x8 =

B2

3x8 ||

Plate Offsets (X,Y)	[2:0-4-1,Edge], [8:0-5-4,Edge], [9:0-4-	9-1-8 9-1-8 •0,0-3-0]		l	17-11-8 8-10-0
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.41 BC 0.52 WB 0.09 Matrix-SH	DEFL.         in           Vert(LL)         -0.09           Vert(CT)         -0.16           Horz(CT)         0.03	(loc) l/defl L/d 2-9 >999 240 2-9 >999 180 8 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 98 lb         FT = 10%
LUMBER- TOP CHORD 2x6 DF BOT CHORD 2x4 DF WEBS 2x4 DF SLIDER Left 2x REACTIONS. (lb/size Max H	· · No.2 · No.2 4 DF No.2 2-4-9, Right 2x4 DF No.2 2 e) 8=690/0-2-0 (min. 0-1-8), 2=1003 or z 2=86(I C 8)	2-4-1 3/0-5-8 (min. 0-1-8)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d Rigid ceiling directly applied MiTek recommends that S installed during truss erect Installation guide.	irectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing. tabilizers and required cross bracing be ion, in accordance with Stabilizer

Max Uplift8=-169(LC 9), 2=-361(LC 8)

 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1186/396, 3-4=-1104/400, 4-11=-988/326, 5-11=-962/335, 5-12=-961/349, 6-12=-989/339, 6-13=-1155/428, 7-13=-1190/423, 7-8=-1255/424

Ň

4x10 ||

BOT CHORD 2-9=-316/987, 8-9=-333/1093 5-9=-31/338, 6-9=-266/159

WEBS

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -4-0-0 to -0-4-13, Interior(1) -0-4-13 to 9-1-8, Exterior(2R) 9-1-8 to 12-8-11, Interior(1) 12-8-11 to 17-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for a) Plates checked for a plus or minus 15 degree rotation about its center.
b) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
c) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit be the non-three the hole with the non-three three the hole with the non-three three the hole with three three

between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.

7) Provide mechanical connection (b) others) of truss to bearing plate capable of withstanding 169 lb uplift at joint 8 and 361 lb uplift at joint 2.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



	8-8-0		13-1-	0	17-9-8	
Plate Offsets (X,Y	8-8-0 ) [1:0-3-8,Edge], [5:0-1-0,Edge], [7:0-3-	5,0-2-11], [10:0-4-0,0-3-0]	4-5-0	<u>,</u>	4-8-8	
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.38 BC 0.51 WB 0.14 Matrix-SH	<b>DEFL.</b> in Vert(LL) -0.09 Vert(CT) -0.17 Horz(CT) 0.03	(loc) l/defl   1-10 >999 2 1-10 >999 1 7 n/a	L/d PLATES 140 MT20 80 n/a Weight: 85 lb	<b>GRIP</b> 220/195 FT = 10%
LUMBER- TOP CHORD 2x4 T3: BOT CHORD 2x4 WEBS 2x4 SLIDER Lef	DF No.2 *Except* 2x6 DF No.2 DF No.2 DF No.2 2x6 DF No.2 2-4-8, Right 2x4 DF No.2 2	-5-1	BRACING- TOP CHORD BOT CHORD	Structural wood sh Rigid ceiling direct MiTek recommer installed during tr Installation guide	eathing directly applied or 5-1- ly applied or 10-0-0 oc bracing nds that Stabilizers and require russ erection, in accordance w	-1 oc purlins. d cross bracing be ith Stabilizer
REACTIONS. (lb. Ma Ma	size) 1=708/Mechanical, 7=812/0-5-8 ( x Horz 1=-60(LC 13) x Uplift1=-171(LC 8), 7=-239(LC 9)	min. 0-1-8)				

.....

. . . .

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1241/427, 2-11=-1172/426, 3-11=-1142/432, 3-12=-997/356, 4-12=-967/365,

. . .

4-13=-969/356, 5-13=-1016/345, 5-6=-1313/459, 6-7=-1378/451

1-10=-341/1070, 9-10=-373/1211, 7-9=-375/1208

BOT CHORD

WEBS 4-10=-72/333, 5-10=-374/166

## NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-7-3, Interior(1) 3-7-3 to 8-8-0, Exterior(2R) 8-8-0 to 12-3-3, Interior(1) 12-3-3 to 19-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 171 lb uplift at joint 1 and 239 lb uplift at joint 7.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Max Uplift1=-170(LC 8), 7=-171(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1227/427, 2-9=-1157/428, 3-9=-1127/434, 3-10=-984/349, 4-10=-954/358, TOP CHORD

4-11=-954/358, 5-11=-986/348, 5-12=-1157/444, 6-12=-1187/438, 6-7=-1254/437

BOT CHORD 1-8=-346/1056, 7-8=-353/1088

WEBS 4-8=-55/328, 5-8=-269/159

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vast=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-7-3, Interior(1) 3-7-3 to 8-8-0, Exterior(2R) 8-8-0 to 12-3-3, Interior(1) 12-3-3 to 17-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 7.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 170 lb uplift at joint 1 and 171 lb uplift at joint 7.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



LOADING (pa TCLL 25 TCDL 7 BCLL ( BCDL 8	sf) 5.0 7.0 ).0 * 3.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	<b>CSI.</b> TC 0.38 BC 0.49 WB 0.10 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 76 II	<b>GRIP</b> 220/195 b FT = 10%	
L <b>UMBER-</b> TOP CHORE BOT CHORE	) 2x4 DF N ) 2x4 DF N	o.2 o.2			BRACING TOP CHO BOT CHO	- RD RD	Structo Rigid o	ural wood ceiling di	d sheathing o rectly applied	directly applied or 5- d or 10-0-0 oc bracir	-1-9 oc purlins. ng.	
WEBS SLIDER	2x4 DF N Left 2x6 D	o.2 )F No.2 2-4-8, Right 2	x6 DF No.2 2-	4-12			MiTe insta Insta	k recomi lled durir llation gu	mends that S ng truss erec uide.	Stabilizers and requi tion, in accordance	red cross bracing be with Stabilizer	
REACTIONS	(lb/size)	1=700/Mechanical. 7	=700/Mechani	cal								

Max Horz 1=57(LC 16) Max Uplift1=-170(LC 8), 7=-171(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1227/427, 2-9=-1157/428, 3-9=-1127/434, 3-10=-984/349, 4-10=-954/358,

4-11=-954/358, 5-11=-986/348, 5-12=-1157/444, 6-12=-1187/438, 6-7=-1254/437

BOT CHORD 1-8=-346/1056, 7-8=-353/1088

WEBS 4-8=-55/328, 5-8=-269/159

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

(2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vast=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-7-3, Interior(1) 3-7-3 to 8-8-0, Exterior(2R) 8-8-0 to 12-3-3, Interior(1) 12-3-3 to 17-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions 3) Plates checked for a plus or minus 15 degree rotation about its center.
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 170 lb uplift at joint 1 and 171 lb uplift at joint 7.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1.



BCLL 0.1 BCDL 8.1	0 * Rep Stress Incr NO 0 Code IRC2018/TPI2014	WB 0.28 Matrix-SH	Vert(CT) -0.1 Horz(CT) 0.0	8 8-9 >999 180 5 7 n/a n/a	Weight: 185 lb FT = 10%
LUMBER-			BRACING-	Structural wood shoothing	directly applied or 2.4.5 on purling
TOF CHORD	T2: 2x4 DF No 2		BOT CHORD	Rigid ceiling directly applie	ed or 10-0-0 oc bracing
BOT CHORD	2x6 DF 2400F 2.0E *Except*		Boronona	ragia coming anoony applie	a of the e e ee blacking.
	B2: 2x6 DF No.2				
WEBS	2x4 DF No.2				
SLIDER	Left 2x6 DF No.2 2-4-3, Right 2x4 DF No.2 2	-5-1			
REACTIONS.	(lb/size) 1=3609/Mechanical, 7=3654/0-5-8 Max Horz 1=56(LC 12) Max Uplift1=-961(LC 4), 7=-978(LC 5)	(min. 0-1-15)			
FORCES. (lb)	) - Max. Comp./Max. Ten All forces 250 (lb)	or less except when show	wn.		
TOP CHORD	1-2=-6524/1717, 2-3=-6501/1744, 3-4=-546 6-7=-7023/1857	66/1464, 4-5=-5472/1462	, 5-6=-6983/1878,		
BOT CHORD	1-12=-1597/5998, 12-13=-1597/5998, 11-1	3=-1597/5998, 10-11=-15	597/5998,		
	10-14=-1597/5998, 9-14=-1597/5998, 9-15	=-1696/6492, 15-16=-169	6/6492,		
	8-16=-1696/6492, 8-17=-1696/6492, 17-18	=-1696/6492, 7-18=-1696	6492		
WEBS	3-11=-267/1102, 3-9=-992/318, 4-9=-774/2	966, 5-9=-1500/462, 5-8=	=-316/1288		

#### NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) All plates are MT20 plates unless otherwise indicated.

Plates checked for a plus or minus 15 degree rotation about its center.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 961 lb uplift at joint 1 and 978 lb uplift at joint 7

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	T09F	Common Girder	1	2	Job Reference (optional)
Louws Truss, Inc., Ferndale, W	Run: 8.530 ID:9H	s Feb 23 2 io7SYbwv	022 Print: 8 vIMuP1LE	.530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar _7 13:06:01 2022 Page 2 3RngdvzdJHT-qTrulVqsouRKhtCnXqniTfu9SsELPoCR4rQPrdzdH34	

# NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 714 lb down and 204 lb up at 1-8-12, 714 lb down and 204 lb up at 3-8-12, 714 lb down and 204 lb up at 5-8-12, 714 lb down and 204 lb up at 7-8-12, 714 lb down and 204 lb up at 9-8-12, 700 lb down and 202 lb up at 11-8-12, 700 lb down and 202 lb up at 13-8-12, and 700 lb down and 202 lb up at 15-8-12, and 170 lb down and 51 lb up at 17-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-64, 4-7=-64, 1-7=-16 Concentrated Loads (lb) Vert: 7=-170(B) 10=-714(B) 12=-714(B) 13=-714(B) 14=-714(B) 15=-714(B) 16=-700(B) 17=-700(B) 18=-700(B)



5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 9 and 247 lb uplift at joint 6.
 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 188 lb uplift at joint 10 and 238 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.





	5-1-12	10-0-0		14-10-	-4		20	-0-0	
S-1-12         4-10-4         5-1-12           Plate Offsets (X V)_         12.0.1.0 Edgel 15.0.1.0 Edgel 16.0.1.12.0.2.01 [9:0.1.12.0.2.01]         11.0.1.12.0.2.01									
LOADING (psf)           TCLL         25.0           TCDL         7.0           BCLL         0.0 *           BCDL         8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.29 BC 0.29 WB 0.25 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.02	(loc) 10 10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 264 lb	<b>GRIP</b> 220/195 FT = 10%
LUMBER- TOP CHORD 2x4 DF N T1: 2x6 D BOT CHORD 2x4 DF N WEBS 2x4 DF N W5: 2x10	BRACING- TOP CHOR BOT CHOR	BRACING- TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.BOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.					0 oc purlins, except		
REACTIONS. (Ib/size) Max Horz Max Uplif	REACTIONS. (lb/size) 12=1954/0-5-8 (min. 0-1-8), 8=1954/0-5-8 (min. 0-1-8) Max Horz 12=-46(LC 5) Max Uplift12=-634(LC 4), 8=-634(LC 5)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-2803/724, 3-4=-3032/821, 4-5=-3032/821, 5-6=-2803/724, 2-12=-1904/645, 6-8=-1904/645         BOT CHORD       10-11=-645/2553, 9-10=-599/2553         WEBS       4-10=-287/105, 5-10=-123/451, 5-9=-453/169, 3-10=-123/451, 3-11=-453/169, 2-11=-684/2648, 6-9=-682/2648									
<ul> <li>NOTES- <ol> <li>2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.</li> <li>Webs connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.</li> </ol> </li> <li>2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.</li> <li>3) Unbalanced roof live loads have been considered for this design.</li> <li>4) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>5) Plates checked for a plus or minus 15 degree rotation about its center.</li> <li>6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>7) * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.</li> <li>8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 634 lb uplift at joint 12 and 634 lb uplift at joint 2.</li> <li>8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 634 lb uplift at joint 12 and 634 lb uplift at joint 8.</li> <li>9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.</li> </ul>									

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1957 lb down and 516 lb up at 10-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BARCELO HOMES/93RD AVE
2200345	T11	Common Girder	1	2	Job Reference (optional)
Louws Truss, Inc., Ferndale, WA 98248			s Feb 23 2	022 Print: 8	530 s Feb 23 2022 MiTek Industries, Inc. Mon Mar 7 13:06:04 2022 Page 2

Run: 8.530's Feb 23 2022 Print: 8.530's Feb 23 2022 Millek Industries, Inc. Mon Mar / 13:06:04 2022 Page 2 ID:9Hio7SYbwwIMuP1LBRngdvzdJHT-F2W0NXsk5ppvYKxMCyKP4HWpe3QMcAPtmpf3SyzdH31

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=-64, 2-4=-64, 4-6=-64, 6-7=-64, 8-12=-16 Concentrated Loads (lb) Vert: 4=-1800(F)



<u>5-1-12</u> 5-1-12	<u> </u>	14-10-4 4-10-4	20-0-0 5-1-12
Plate Offsets (X,Y) [2:0-3-0,0-2-0], [3:0-1-0,Edge], [9:0-4-	,0-3-0]		
LOADING (psf)         SPACING-         2-0-0           TCLL         25.0         Plate Grip DOL         1.15           TCDL         7.0         Lumber DOL         1.15           BCLL         0.0 *         Rep Stress Incr         YES           BCDL         8.0         Code IRC2018/TPI2014	CSI.         DEFL.         ir           TC         0.44         Vert(LL)         -0.02           BC         0.25         Vert(CT)         -0.06           WB         0.21         Horz(CT)         0.07           Matrix-SH         Horz(CT)         0.07	n (loc) l/defl L/d 4 8-9 >999 240 5 8-9 >999 180 1 7 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 111 lb         FT = 10%
LUMBER- TOP CHORD 2x4 DF No.2 *Except* T1: 2x6 DF No.2 BOT CHORD 2x4 DF No.2 WEBS 2x4 DF No.2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 10-11. MiTek recommends that Si installed during truss erecti	rectly applied or 5-6-1 oc purlins, except or 10-0-0 oc bracing, Except: abilizers and required cross bracing be on, in accordance with Stabilizer

## REACTIONS. (lb/size) 11=1082/0-5-8 (min. 0-1-8), 7=760/0-5-8 (min. 0-1-8) Max Horz 11=74(LC 8) Max Uplift11=-381(LC 8), 7=-188(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1115/359, 3-13=-953/324, 4-13=-899/336, 4-14=-897/347, 5-14=-951/336,

- 5-15=-1091/369, 6-15=-1182/362, 2-11=-1041/492, 6-7=-718/250
- BOT CHORD 9-10=-327/980, 8-9=-333/1078
- WEBS 4-9=-66/310, 5-9=-326/137, 2-10=-313/1115, 6-8=-294/1007
- NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -4-0-0 to -0-4-13, Interior(1) -0-4-13 to 10-0-0, Exterior(2R) 10-0-0 to 13-7-3, Interior(1) 13-7-3 to 19-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Plates checked for a plus or minus 15 degree rotation about its center.

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 381 lb uplift at joint 11 and 188 lb uplift at joint

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



	5-1-12		10-0-0	14-10-4	20-0-0	
5-1-12		I	4-10-4 4-10-4		5-1-12	
Plate Offsets (X,Y) [	[2:0-3-0,0-2-0], [3:0-1-0,Edge], [9:0-4-	0,0-3-0]				
LOADING (psf) TCLL 25.0 TCDL 7.0 BCLL 0.0 * BCDL 8.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.44 BC 0.25 WB 0.21 Matrix-SH	DEFL.         in           Vert(LL)         -0.04           Vert(CT)         -0.06           Horz(CT)         0.01	(loc) l/defl L/d 8-9 >999 240 8-9 >999 180 7 n/a n/a	PLATES         GRIP           MT20         220/195           Weight: 111 lb         FT = 10%	
LUMBER- TOP CHORD 2x4 DF T1: 2x6 BOT CHORD 2x4 DF WEBS 2x4 DF	No.2 *Except* DF No.2 No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied 6-0-0 oc bracing: 10-11.	irectly applied or 5-6-1 oc purlins, except or 10-0-0 oc bracing, Except:	
				MiTek recommends that St installed during truss erection Installation guide.	abilizers and required cross bracing be ion, in accordance with Stabilizer	

REACTIONS. (lb/size) 11=1082/0-5-8 (min. 0-1-8), 7=760/Mechanical Max Horz 11=74(LC 8) Max Uplift11=-381(LC 8), 7=-188(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1115/359, 3-13=-953/324, 4-13=-899/336, 4-14=-897/347, 5-14=-951/336,

5-15=-1091/369, 6-15=-1182/362, 2-11=-1041/492, 6-7=-718/250

BOT CHORD 9-10=-327/980, 8-9=-333/1078

- WEBS 4-9=-66/310, 5-9=-326/137, 2-10=-313/1115, 6-8=-294/1007
- NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -4-0-0 to -0-4-13, Interior(1) -0-4-13 to 10-0-0, Exterior(2R) 10-0-0 to 13-7-3, Interior(1) 13-7-3 to 19-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Plates checked for a plus or minus 15 degree rotation about its center.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 381 lb uplift at joint 11 and 188 lb uplift at joint 7.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



## REACTIONS. (lb/size) 4=161/Mechanical, 3=131/Mechanical Max Horz 4=-72(LC 6) Max Uplift4=-84(LC 4), 3=-71(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

1) Wind: ASCE 7-16; Vult=110mph (3-second gust) Vasd=87mph; TCDL=4.2psf; BCDL=3.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Plates checked for a plus or minus 15 degree rotation about its center.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 4 and 71 lb uplift at joint 3.

- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 70 lb down and 69 lb up at 0-11-14 on top chord, and 48 lb down at 0-11-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-64, 3-4=-16

Concentrated Loads (lb)

Vert: 5=-70(F) 6=-22(F)